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Abstract
Background

Next generation sequencing technology has led to the generation of millions of short reads at an affordable cost. Aligning these short 
reads to a reference genome is a crucial task for many downstream applications. However due to the large size of such data, the process 
of alignment is computationally challenging and requires sophisticated algorithms which are both fast and accurate. In this work we will 
briefly discuss the Strand NGS (formerly Avadis NGS) alignment algorithm, but more importantly present the benchmarking results on 
several simulated data sets and a real whole-genome data to compare it with other standard state-of-the-art algorithms.

Results

Multiple aligners like Strand NGS, BWA, BWA-Mem, Bowtie2 and Novoalign3 are compared for accuracy and computational efficiency 
using 4 simulated data sets from the GCAT website and a real Illumina HiSeq 2500 whole-genome paired-end data of 1000 genomes 
CEU female sample, NA12878. Strand NGS and Novoalign3 showed comparable accuracy in terms of both, % correctly mapped reads and 
receiver operating curves (ROC). They also seem to outperform other algorithms especially on data sets with longer InDels. For reads 
potentially originating from complex genomic locations like repeat regions (and therefore assigned low mapping quality), Strand NGS 
aligner, with careful and intelligent filtering of false positives based on mapping qualities, produces a higher true positive rate compared 
to Novoalign3. As for the performance comparison based on computational efficiency, other than minor differences, practically all the 
included algorithms showed comparable performance.

Conclusions

Alignment of millions of short reads to a large reference genome with many complex regions is still a hard problem and almost all current 
algorithms adopt some form of strategy to trade-off accuracy and computational efficiency. The benchmarking results presented in this 
study suggest that Strand NGS is a powerful approach for short read alignment and either compares well or even outperforms other 
state-of-the-art algorithms.

1. Introduction
There has been an unprecedented growth in sequencing data due to the rapid advancements in the next-generation sequencing 
(NGS) technology. For a whole-genome sample, the number of reads can vary from few million long reads (≥400bp) generated by 
instruments like PacBio and 454, to 2-3 billion short reads (≥75bp) generated by instruments like Illumina/Solexa and SOLID. 
Further, there has been a significant cost reduction in DNA sequencing, attracting more and more researchers to use NGS technology 
in their own labs. However, unless we have proper bioinformatics tools to process and analyze this large amount of sequencing 
data, data by itself is not of much use.

1.1. Problem Statement and Challenges

One of the first steps in the analysis of NGS data, other than of course checking the quality and filtering out bad quality reads, is 
alignment or mapping of the generated sequencing reads to the respective reference genome. An accurate and efficient 
alignment of reads to a reference genome is crucial for many downstream applications, for example variant calling, structural 
variant detection including copy number changes, detecting protein-DNA binding sites using ChIP Sequencing, comparing expression 
of genes/transcripts across different biological conditions, understanding methylation patterns in DNA, determining species 
composition using metagenomics workflow, etc. However, alignment is a challenging problem due to the following reasons:

A )  A reference genome is typically long (~billions) and has complex regions like repetitive elements, etc.

B )  Reads are short in length (typically, 50 – 150bp), presenting issues with accuracy, and large in number, presenting issues with  
efficiency.

C )  Reads have sequencing errors and must be mapped to unique positions in the reference genome.

D )  The subject genome (for example, tumor sample) may inherently be different from the reference genome because of acquired 
alterations over time, making the alignment difficult.
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In order to address the above challenges, numerous approaches (MAQ [1], BWA [3], BWA-Mem, BWA-SW [11], Bowtie [9], Bowtie2 
[2], SOAP2 [4], Novoalign [8], Novoalign3 [8], mrFAST [6], mrsFAST [7], SHRIMP [5], etc.) have been developed in the past. There 
have also been some benchmarking studies discussing and comparing results from different subsets of these approaches.

1.2. Evaluation Approach

Since the alignment task can very quickly become a bottleneck in the analysis pipeline due to the ever-increasing volume of the 
sequencing data, most of the above approaches adopt a trade-off between accuracy and speed. The choice of number of 
mismatches or gaps allowed, neglecting quality of data and known SNP information during alignment are some of the ways to 
trade-off accuracy in favor of speed or efficiency. Due to this trade-off, it is important to assess the performance of different 
algorithms on both metrics, i.e., accuracy of read alignment, and computational efficiency. However, since accuracy of the 
alignment process directly impacts the results of many downstream applications, accuracy is a more important metric than 
efficiency as long as the algorithm runs in a reasonable amount of time given the computational resources at hand.

To measure performance in terms of accuracy, we use simulated data sets for benchmarking and use the following four evaluation 
criteria:

A )  Fraction (or %) of correctly, incorrectly and unmapped reads when alignment was done for

- All reads
- Only reads with SNPs
- Only reads with InDels
- Only reads with both SNPs and InDels

B )  Trade-off between True Positive Rate (TPR) and False Positive Rate (FPR). In this case, TPR and FPR correspond to correctly 
mapped and incorrectly mapped reads respectively.

C )  Mapping quality distribution of incorrectly mapped reads.

D )  Fraction (or %) of correctly, incorrectly and unmapped reads for special case of reads that are assigned low mapping qualities 
(representing ambiguous reads possibly originating from repeat regions in the genome).

To measure performance in terms of computational efficiency, we use a real data set (a whole-genome sequencing run for a 
widely used sample NA12878) and the total run-time of the chosen algorithms is used as an evaluation criterion. The total time 
taken for alignment includes the following times:

A )  Time taken for Burrows Wheeler Transform (BWT) search to find the initial exact seeds.

B )  Time taken for Dynamic Programming (DP) around the seeds found.
 
C )  Time taken for post-processing to produce final alignment results.

Also, it is important to note that the total time reported should not include the time taken in the following tasks:

A )  Time taken to build the BWT index on the reference genome (since this is a one-time task).
B )  Time taken to import the sample and collect/calculate QC metrics.

2. Algorithms Compared for Benchmarking
To make the alignment process more efficient, most alignment algorithms start by building an index on the reference genome. 
This index is then used to find the genomic locations for each read. There are some algorithms that build index on the reads but 
most of the popular recent algorithms build index on the reference genome. This is because the same index once built on a 
reference genome can be used repeatedly for aligning different read sets. There are two main techniques used for building the 
index on reference genome: hash tables and Burrows-Wheeler transform (BWT). In this study, we only consider the following 
algorithms that build an index (either BWT- or hash table-based) on the reference genome:
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A )  Strand NGS: It is a BWT-based aligner, which in the first step, uses the Ferrazina and Manzini [10] algorithm to find the seeds 
of each read quickly in the reference. Then for every seed match found for the read, a Smith-Waterman type dynamic 
programming (DP) algorithm is applied to determine if the read matches around the area anchored by the seed. This match 
must satisfy the specified mismatches and gaps threshold.

B )  BWA: It is a BWT-based aligner, which uses the Ferrazina and Manzini [10] matching algorithm to find seeds. Then a 
backtracking algorithm is used that searches for matches between a substring of the reference genome and the query within 
a certain defined distance.

C )  BWA-Mem: It is conceptually based on BWA but reported to handle long reads and considered to be more accurate and faster.

D )  Bowtie2: It is a BWT-based aligner, but just like BWA uses the Ferrazina and Manzini [10] matching algorithm to find seeds. 
Bowtie2 is designed to handle long reads and supports additional features that are not supported by Bowtie.

E )  Novoalign3: It is a hash table-based tool, which first builds the index on the reference using hash tables and then uses the 
Neddleman-Wunsch algorithm with affine gap penalties to find the optimal alignment.

Other than Novoalign3, which uses the hash table-based index, others used BWT-based index. Despite the conceptual similarities 
among the BWT index-based algorithms, there are still differences in their seeding strategies and optimizations. For example, 
Bowtie2 search for the seeds of length 16 with a gap of 10 then prioritize the seed locations and perform DP around them. BWA 
on the other hand, does the inexact matching in the BWT index itself. In Strand NGS, we keep extending the seed till the seed is 
present in the reference. Then we jump by one-third of the seed and start searching for the next seed. In the end, we take the 
4 longest seeds and find the seed locations in the reference. After removing the duplicate seed locations, DP is performed at each 
seed location.

3. Data Sets Used
The GCAT (Genome Comparison and Analytic Testing) [12] platform which is developed by Arpeggi Inc. and hosted on the 
bioplanet website, is heavily used in this study. GCAT provides a solid testing platform for comparing the performance of multiple 
genomic analysis tools across a standard set of metrics. For alignment tests, the GCAT website hosts different simulated data sets 
covering read lengths of 100, 150, 250, and 400; single-end and paired-end library protocols; and both short and long InDels. 
Assuming a typical use-case scenario where Illumina paired-end data is used, we selected four data sets from GCAT in this study 
for benchmarking purposes. The details of these data sets are shown in table 1. The base quality for each base in all the four 
simulated data sets is 17, producing an average read quality of 17.

For computational performance benchmarking, we used the data from whole-genome sequencing of the sample, NA12878 on 
Illumina HiSeq 2500 using paired-end library. This data is ~103GB and comprises of 1,165,216,818 (~1.16 billion) paired-end 
reads of length 150bp [13].

There are some limitations of using simulated data sets for accuracy benchmarking. First, it is difficult to mimic the error patterns in 
the generated reads that matches the true error model of the sequencer; and second it is not guaranteed that the true genomic 
location of the generated read with simulated sequencing errors is the one where the read is generated from. The read with 
simulated sequencing errors and/or SNPs/InDels can very well align at a different location with better accuracy. However barring few 
instances like these, still the ease of defining the truth makes this approach viable and useful for benchmarking studies. Therefore 
despite some shortcomings, most of the high-level comparisons that can be derived about different algorithms using simulated data 
sets still hold, thereby providing a useful resource to the users to understand the pros and cons of multiple alignment algorithms.

Data
set

Read
length

Library
protocol

Indel Total # of
reads

# of reads
with SNPs

# of reads
with

InDels

# of reads
with both
SNPs and

InDels

D1

D2

D3

D4

100bp

100bp

150bp

150bp

PE

PE

PE

PE

Table 1: Description of GCAT data sets

Short

Long

Short

Long

313,753

308,029

304,788

310,750

31,731

31,135

44,449

45,782

11,945,250

11,945,250

7,963,500

7,963,500

1,202,587

1,195,002

1,158,693

1,164,160
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4. Accuracy Benchmarking Results
In an effort to keep this article short, we only provide detailed results and discussion on one of the GCAT data sets for accuracy 
benchmarking. Since reads with large InDels pose greater challenge in alignment, we’ll only cover the benchmarking results on 
data set D4 in more detail. For comparison of alignment algorithms on other data sets (D1, D2, and D3), we have uploaded our 
results on the GCAT website, the links to those reports are provided in table 2. Most of the conclusions made in this study using 
the results on data set D4 hold good for other data sets, however the differences in the algorithms for data sets with short InDels 
(D1 and D3) are less pronounced.

D1

D2

D3

D4

http://www.bioplanet.com/gcat/reports/2158-erfdckinhu/alignment/100bp-pe-smallindel/Strand_NGS/compare-23-18

http://www.bioplanet.com/gcat/reports/2170-bfylstbnvx/alignment/100bp-pe-largeindel/Strand_NGS/compare-87-25

http://www.bioplanet.com/gcat/reports/2159-ebujlcsqie/alignment/150bp-pe-smallindel/Strand_NGS/compare-66-78

http://www.bioplanet.com/gcat/reports/2171-walhckfaxd/alignment/150bp-pe-largeindel/Strand_NGS/compare-67-79

Table 2: Links to the GCAT website for alignment benchmarking reports on all the data sets (D1, D2, D3, and D4)

GCAT link to Benchmarking Report
Data
set

4.1. Alignment Accuracy on Data Set D4

As per the evaluation criteria mentioned in section 1.2, table 3 shows the fraction of correctly, incorrectly and unmapped reads for 
four different algorithms in various scenarios. All the algorithms were run on default parameters.

Since the reads with SNPs or InDels, which typically makes the read alignment difficult, constitute a small percentage of the data, all 
the algorithms, particularly Strand NGS, BWA, and Novoalign3, have comparable alignment accuracy when all reads are used. 
Bowtie2 has a slightly worse alignment accuracy compared to others on both metrics, i.e. % correctly mapped and % incorrectly 
mapped.

However for all practical purposes, alignment accuracy for all four algorithms can be considered in the same ballpark when results 
are summarized across all reads.

On the other hand, if we focus on the alignment accuracy considering only reads with SNPs, only reads with InDels, or only reads 
with both SNPs and InDels, there are more clear differences in the accuracy of different algorithms. For example, comparing the 
accuracy of different algorithms on 45,782 reads that have both SNPs and InDels, Strand NGS and Novoalign3 seem to be performing 
equally well but relatively better than BWA and Bowtie2 in terms of both metrics, producing higher % of correctly mapped reads 
(high TPR) and lower % of incorrectly mapped reads (low FPR).

Table 3:  Alignment accuracy of Strand NGS, BWA, Bowtie2, and Novoalign3 on simulated data set ‘D4’

Strand NGS

BWA

Bowtie2

Novoalign3

Alignment Accuracy (in %) for Data Set D4 [150bp long reads, paired-end protocol, long InDels]

Correctly Mapped

Incorrectly Mapped

Unmapped

Correctly Mapped

Incorrectly Mapped

Unmapped

Correctly Mapped

Incorrectly Mapped

Unmapped

Correctly Mapped

Incorrectly Mapped

Unmapped

99.22

0.5868

0.1938

98.54

0.6914

0.7673

96.87

2.696

0.4294

98.99

0.1411

0.8672

All Reads

[7,963,500]

99.11

0.6452

0.2468

97.96

0.6948

1.346

96.29

3.035

0.6718

98.94

0.1441

0.9187

96.58

2.550

0.8692

90.48

3.868

5.648

93.46

5.405

1.139

95.80

3.34

0.8608

Reads with

InDels

[310,750]

Reads with

SNPs

[1,164,160]

95.88

2.728

1.396

89.86

3.862

6.275

93.02

5.515

1.468

95.72

3.355

0.9218

Reads with

SNPs and InDels

[45,782]
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4.2. Relationship between True-Positive and False-Positive Rate

Typically, there is a trade off between TPR and FPR and the relationship between them is an important and commonly used metric 
to compare different algorithms. To assess the relationship between TPR and FPR, we restrict the analysis to the reads with both 
SNPs and InDels (45,782 reads in this case), since these reads are most difficult to align and therefore represent a good set to 
compare the pros and cons of different algorithms. As per the description on the GCAT website, to generate the plot showing 
relationship between true-positive and false-positive rate, first reads are sorted based on their normalized mapping qualities from 
high to low, and then correct and incorrect percentages are calculated. Incorrect read % is plotted in log-scale on the y-axis and 
correct read % is plotted on the x-axis.

The further the line goes to the right before turning upwards, the better the accuracy. This is because typically the percentage of 
incorrectly mapped reads is low for reads with high mapping quality, with this percentage increasing with the decrease in the 
mapping quality.

As can be seen from figure 1, BWA and Bowtie2 show a steep curve upwards compared to Strand NGS and Novoalign3, indicating 
larger percentage of incorrectly mapping reads even for reads that are assigned higher mapping quality by the respective 
algorithms. On the other hand, this curve for Strand NGS and Novoalign3 goes up more gradually, indicating only a mild increase in 
FPR as TPR increases.

Figure 1:
Relationship between true-positive and false-positive rate when only reads with both SNPs and InDels are considered.

Strand NGS Bowtie2 BWA Novoalign3
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4.3. Distribution of Mapping Quality of Incorrectly Mapped Reads

Regardless of the choice of the alignment algorithm, due to short length of the reads, sequencing errors and complex genomic 
locations including repeat regions, there will be some percentage of incorrectly mapped reads. These incorrectly mapped reads are 
likely to produce false positives in downstream analysis like variant calling. However since most variant calling algorithms take 
into account the read/base quality as well as mapping quality assigned by the alignment algorithm, it is possible to avoid some 
false positives if low mapping qualities are assigned to the incorrectly mapped reads. Therefore, one of the important criterion to 
compare alignment algorithms is to assess the distribution of mapping qualities assigned by them to incorrectly mapped reads. As 
mentioned, if an algorithm incorrectly maps the read but assigns a low mapping quality to it, the read can be filtered out in the 
variant calling step, avoiding false positive calls originating from it. On the other hand, if incorrectly mapped reads are assigned 
high mapping quality, there is no way to filter these out leading to more false positives.

To assess what mapping qualities are assigned to incorrectly mapped reads by different algorithms, GCAT provides a plot showing 
the mapping quality distribution for incorrectly mapped reads. Figure 2(a) shows this distribution for all reads, and figure 2(b) 
shows the same distribution for only reads with InDels. For better visualization, we also show in figure 3(a) and 3(b) the similar 
distributions, however comparing only Strand NGS and Novoalign3 since both of these algorithms are found to have comparable 
but higher alignment accuracy as compared to BWA and Bowtie2 (refer to table 3).

Figure 2(a):
Distribution of mapping qualities assigned to incorrectly mapped reads (results from all 4 algorithms are shown).

Strand NGS Bowtie2 BWA Novoalign3
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There are two important points to observe from figure 2(a) and 2(b), which apply to all the algorithms. First, every algorithm aligns a 
fraction of reads incorrectly with mapping quality as 100. There is most likely no ambiguity in aligning these reads due to multiple 
locations being equally likely, but still the reads are mapped incorrectly due to other issues. Second, a higher fraction of incorrectly 
mapped reads are towards the left side of the plot indicating an assignment of lower mapping quality to them. This is good because 
later these incorrectly mapped reads can be filtered out using an appropriate mapping quality threshold before proceeding with the 
variant calling step. If we ignore the incorrectly mapped reads with mapping quality 100, and focus on the rest which are likely 
incorrectly aligned due to ambiguous locations, we observe that particularly Strand NGS assigns lower mapping quality to these 
reads compared to the other three algorithms. The maximum mapping quality assigned by Strand NGS to incorrectly mapped reads 
(ignoring reads with mapping quality 100) is around 50, whereas the rest of the algorithms, including Novoalign3, assigns much 
higher mapping quality to these reads, thereby making it difficult to filter out these reads in the variant calling step. This is more 
clearly visualized in figure 3(a) and (b), where only Strand NGS and Novoalign3 are compared.

Strand NGS Bowtie2 BWA Novoalign3
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Figure 2(b): Distribution of mapping qualities assigned to incorrectly mapped reads with InDels (results from all 4 algorithms are shown).

Figure 3(a): Distribution of mapping qualities assigned to incorrectly mapped reads (results from only Strand NGS and Novoalign3 are shown).
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Figure 3(b):
Distribution of mapping qualities assigned to incorrectly mapped reads with InDels (results from only Strand NGS and Novoalign3 are shown).

4.4. Alignment Accuracy for Reads with Low Mapping Quality

The reads that originate from complex genomic locations, like repeat regions for example, are difficult to align. Typically these 
reads are classified as ambiguous by most algorithms as multiple locations in the genome are found to be equally likely for 
alignment of these reads. Depending on the algorithm or the choice of parameter settings, either all the genomic locations are 
reported or one random location is chosen and reported for these ambiguous reads. In either case, most of the algorithms reduce 
the mapping quality of these reads to reflect the ambiguity in their alignment. In this section, to assess the performance of 
algorithms in terms of accuracy on these ambiguous reads, we’ll only compare Strand NGS and Novoalign3 because of the 
following reasons:

A )  In terms of % correctly and % incorrectly mapped reads (which is used as the primary metric of accuracy), Strand NGS and 
Novoalign3 have similar accuracy, and both are found to be better than BWA and Bowtie2. Therefore, we believe that this 
additional analysis is valuable for comparing Strand NGS and Novoalign3 only.

B )  Each algorithm has its own way of assigning mapping qualities. In addition, the mapping qualities assigned by different 
algorithms are in various ranges. This is the reason GCAT normalizes the mapping qualities between 0 and 100. Despite 
normalization, number of reads falling in different normalized mapping quality bins as per different algorithms, could be very 
different. Comparing algorithms on largely different number of reads may not be very useful. Strand NGS and Novoalign3 have 
similar number of reads that are assigned normalized mapping quality between 0 and 20, hence making the comparison more 
meaningful. On the other hand, Bowtie2 particularly has much higher number of reads with normalized mapping quality 
between 0 and 20. In this analysis, we have also included another algorithm, BWA-Mem which is a higher version of BWA and 
have assigned a normalized mapping quality between 0 – 20 to a comparable number of reads as Strand NGS and Novoalign. 

Strand NGS Novoalign3
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Table 4: Alignment Accuracy of Strand NGS, Novoalign3 and BWA-Mem on reads with low mapping quality

126,906 (77.35%)

21,731 (13.24%)

15,434 (9.407%)

88,834 (56.05%)

603 (0.3804%)

69,061 (43.57%)

113,817 (72%)

44,266 (28%)

0 (0%)

 Strand NGS
(164,071 reads)

Novoalign3
(158,498 reads)

BWA-Mem
(158,083 reads)

Correctly Mapped

Incorrectly Mapped

Unmapped

It is clear from table 4 that Strand NGS has a higher percentage of correctly mapped reads (high TPR) compared to both 
Novoalign3 and BWA-Mem. On the other hand, percentage of incorrectly mapped reads (FPR rate) of Strand NGS is lower than 
BWA-Mem, thereby making it better than BWA-Mem on both metrics, but higher than Novoalign3 making the comparison between 
Strand NGS and Novoalign3 non-trivial. However, if we refer to the previous section and particularly figure 3(a) and figure 3(b) 
where distributions of mapping qualities assigned by these two algorithms to incorrectly mapped reads are examined, we also 
know that Strand NGS assigned relatively low mapping quality to incorrectly mapped reads. Therefore it is easy to filter out many 
incorrectly mapped reads by Strand NGS before the variant calling step, which is one of the most common downstream analysis 
steps. For example, a mapping quality threshold of 50% would filter out a large fraction of the incorrectly mapped reads, thereby 
reducing FPR to a large extent without sacrificing high TPR obtained using Strand NGS. Further, it is also important to note that 
incorrectly mapped reads by BWA-Mem cannot be filtered out using a threshold on normalized mapping quality because similar to 
Novoalign3, normalized mapping qualities assigned by BWA-Mem are more or less spread uniformly in the range 0 – 100 (data not 
shown here but accessible on the GCAT report, link to which is provided in table 2).

5. Computational Performance Benchmarking Results
For computational performance benchmarking, we performed the alignment of real whole-genome sample NA12878 (details in 
section 3), using the algorithms Strand NGS, BWA-Mem, and Bowtie2; on a machine with 64GB RAM and 15 cores. BWA-Mem is 
used instead of BWA because BWA-Mem is reported to be faster than BWA. Further, we did not include Novoalign3 in computational 
performance benchmarking because it is a proprietary algorithm and the academic version doesn't support multi-threading, making 
it harder to compare the run-time of Novoalign3 with the rest of the algorithms.

As per the evaluation criteria defined in section 1.2, table 5 shows the total time taken by different algorithms in aligning ~1.16 
billion paired-end reads generated from the sample NA12878 against hg19 human genome reference.

Out of the total 7,963,500 reads in data set D4, Strand NGS, Novoalign3 and BWA-Mem assigns a normalized mapping quality of 
0 - 20 to 164,071, 158,498 and 158,083 reads, respectively. Table 4 shows the alignment accuracy of the three algorithms on 
these reads.

It is clear from table 5 that Strand NGS, in addition to offering higher alignment accuracy as demonstrated in the previous section, 
is computationally fast compared to other standard alignment algorithms.

Table 5: Computational performance of algorithms on whole-genome sequence data for sample NA12878

Total Time Taken

9 hours, 32 minutes

12 hours, 09 minutes

11 hours, 0 minutes

Data Set: Whole-genome sequencing run with ~1.16 billion reads from sample NA12878

Algorithm

Strand NGS

BWA-Mem

Bowtie2
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6. Conclusions
In this work, we presented a benchmarking study to compare the performance, in terms of accuracy and computational run-time, of 
multiple alignment algorithms: Strand NGS, BWA, BWA-Mem, Bowtie2, and Novoalign3. In terms of accuracy measured as the 
fraction of correctly and incorrectly mapped reads, Strand NGS and Novoalign3 seem to be comparable to each other but superior 
to other algorithms considered in this study. Further for both Strand NGS and Novoalign3, FPR rate increases mildly with the 
increase in TPR rate, as opposed to steeper increase in case of BWA and Bowtie2. However when we focused closely on the 
assigned mapping qualities by Strand NGS and Novoalign3 to incorrectly mapped reads, we noticed that Strand NGS assigns lower 
mapping quality to them compared to Novoalign3, thereby providing a way to remove them before the downstream analysis.

In addition, we also focused on a subset of the reads, which are assigned very low mapping quality by both Strand NGS and 
Novoalign3. We found that Strand NGS has a higher true-positive rate, albeit at the cost of higher false-positive rate. However, we 
argue that since Strand NGS assigns low mapping quality to incorrectly mapped reads, false positive rate can be significantly 
reduced by choosing a lower cut-off on mapping quality without affecting the true-positive rate.

Overall, based on the results presented in this study, we strongly believe that Strand NGS offers a solid approach for DNA read 
alignment and either performs comparably well or outperforms most of the state-of-the-art algorithms, including Novoalign3 in 
one or more aspects. Further, since Strand NGS offers a GUI-based solution with a visually appealing and convenient way to 
change parameters, we believe it is one of the easiest tools to use by researchers with limited or even no knowledge of algorithms 
or bioinformatics.
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