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C
hIP-Seq is a widely used approach for studying tran-
scription factor binding sites or histone modifications
and their role in gene regulation in multi-cellular or-

ganisms. This benchmarking paper describes some of the
algorithms implemented in Strand NGS and illustrates their
efficacy in detecting both narrow and broad peaks/regions
from the ChIP-Seq data.

1 Introduction

Chromatin immunoprecipitation (ChIP) followed by high
throughput sequencing (ChIP-Seq) is one of the widely
used approaches for elucidating interactions between
DNA and proteins. It provides an essential tool for
researchers to understand the role of transcription factors
(TFs) or histone modifications (HMs) in gene regulation.
Briefly, in the first step of chromatin immunoprecipitation,
certain DNA fragments are enriched using antibodies for a
specific TF. In the second step, enriched DNA fragments
are sequenced using massively parallel DNA sequencing
technology. The output of this process is a collection of
many short sequencing reads or tags.

ChIP-seq is used to study either the cistrome of TFs
(identification of all cis-acting targets or binding sites of
a TF) [2] or the epigenome profile, especially the histone
modification status [1]. Typically the distribution of
sequencing reads for these cases is very different. While
for most TFs, enriched regions are generally discrete and
form sharp peaks covering short regions of DNA (10s or
100s of bases), the distribution of reads for many types of
histone modification events follows a continuous property
and span regions of up to several hundred kilobases.

While ChIP-Seq technology provides a useful way
to study transcription factor binding sites and histone
modification events, it has several challenges such as the
presence of noisy background tag counts with local biases,
dependence of ChIP-Seq sensitivity and specificity on
sequencing depth and number of replicates, difficulty in

discovering shorter regions for transcription factor binding
sites - larger regions can lead to more false positive motifs
in the downstream analysis, etc. Numerous approaches
have been proposed in the past to address some of these
challenges. While MACS [14], PICS [13], PeakSeq [8] and
SISSRS [6] are some of the popular methods for narrow
peak detection, Broadpeaks [10], SICER [12], ZINBA [7],
CCAT [11], and RSEG [9] are some of the broad peak
callers.

In this study, we wanted to assess the applicability of the
algorithms implemented in Strand NGS to detect binding
sites of a transcription factor (narrow peaks) as well as
enriched regions corresponding to histone modification
(broad peaks). Several state-of-the-art algorithms such as
PICS [13] and MACS [14] have been implemented in Strand
NGS for the detection of transcription factor binding
sites (TFBS). In addition, we have also implemented a
sliding window based algorithm called ‘Find Enriched
Regions (FER)’, which detects enriched regions showing
high coverage with respect to a control sample. For broad
peak detection, one of the recent studies [3] suggested
running MACS with an advanced parameter ‘-nomodel’
(no shift model building). Further, when control sample is
not available, one can also use the parameter ‘nolambda’
(no background estimation). MACS with these advanced
parameters turns out to be a good alternative for broad
peaks detection and was also found to outperform several
other broad peak callers [10]. Further, a new version
of MACS (version 2.0) has been released recently and
has an additional parameter ‘-broad’ for the detection
of broad peaks. In Strand NGS, MACS (version 1.4)
is implemented without the advanced parameter ‘-nomodel’.

We hypothesize that for most practical purposes, the
performance of MACS with the advanced parameter ‘-
nomodel’ is similar to that of ‘FER’. In this study, we used
3 histone modification data sets to test this hypothesis.
MACS (both version 1.4 and version 2.0) was downloaded
and executed from the command-line option. In addition
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a human transcription factor binding data set for FoxA1
is also used to show similarity in results for narrow peaks
obtained from Strand NGS implementation of MACS and
command-line option of MACS from the original source.

2 Methods

2.1 Algorithms

The algorithms used in this study are described below.
MACS1.4 (with only model building option) and FER are
implemented in Strand NGS. MACS1.4 (with advanced
parameters) and MACS2.0 were downloaded and executed
from the command-line.

2.1.1 Find Enriched Regions (FER)

Description: The enriched region detection is a simple
procedure for quickly estimating regions with high coverage.
A window of user-specified size slides through the treat-
ment and control sample and is considered enriched if the
following criterion is satisfied:

Nt/St

Nc/Sc
> e (1)

where Nt and Nc denote the # of reads in the treatment
and control sample window respectively; St and Sc denote
the total # of reads in the treatment and control sample
respectively.

Equation (1) ensures that the treatment sample window
has e− fold more normalized read count compared to the
respective control sample window. In cases where control
sample is not available, a window is considered enriched if
the number of reads exceeds a given threshold. Finally to
obtain an enriched region, consecutive enriched windows
are merged together.

Parameters: Table 1 shows the parameters of the FER
algorithm along with their default values in Strand NGS.

Parameter Description Default
value in
Strand
NGS

Enrichment fac-
tor (e)

Ratio of normalized coverage in
treatment and control window

5

Window size Width of the sliding window 100bp
Window slide
size

Length by which the window
slides in a step

50bp

Min # reads in
window

Minimum # of reads that
should start in the window

10

Min region size Lower cut-off on the size of the
detected enriched region

150

Min # reads in
region

Minimum # of reads in the en-
riched region

15

Upstream
padding dis-
tance for genes

Defines the extent of the up-
stream region for a gene for an-
notating enriched regions

5000bp

Table 1: Description of parameters used in FER algorithm.

Based on different parameter settings, we discuss 3 vari-
ations of FER in this paper. FER-PS1 uses all the default
parameters; FER-PS2 uses a window size of 150bp and

default values for the rest of the parameters; FER-PS3
uses a window size of 400bp, window slide size of 100bp,
Min region size of 100bp, Min # reads in region of 10, and
default values for the rest of the parameters.

2.1.2 MACS (ver1.4 and ver2.0)

Description: Model-based Analysis of ChIP-Seq (MACS)
estimates the region of DNA-protein interaction sites (tran-
scription factor binding sites) or epigenetic modification
(histone modification) regions by building a shift model
where the tags are shifted to the 3’ direction. The density
of the ChIP-Seq fragments show a bimodal distribution
around the region of interest as they are sequenced from
both ends equally. MACS estimates the fragment length
as the distance between the two modes and hence the
shift distance of the tags to precisely identify the region of
interest.

Following are the brief steps in MACS:

1. Select 1000 regions with a 10− to 30−fold enrichment
relative to the random tag genome distribution.

2. Build a model and estimate the DNA fragment size
(d). To build a model, separate the Watson and Crick
tags for the above selected regions. Next, align these
tags by the midpoint between the Watson and Crick
tag centers. The distance between the modes of these
positive and negative peaks in the alignment is defined
as the fragment length, d.

3. Shift the tags towards the 3’ end by d/2.

4. For experiments with control, linearly scale the control
and the treatment libraries.

5. Using a window of size 2d, slide across the genome
to find candidate peaks with significant enrichment
relative to genome background.

6. Model the number of reads from a genomic region as
a Poisson distribution with dynamic parameter λlocal.
The λlocal for a candidate peak is defined as:

λlocal = max(λBG, [λRegion, λ1k], λ5k, λ10k) (2)

Here, λBG is a constant estimated from genome back-
ground. λRegion is from candidate region in the control
sample and remaining λx values are from x-bp win-
dow centred at candidate region in the control sample.
When control is not available, λlocal is calculated using
the treatment sample.

7. The candidate peaks that pass the user defined p −
value cutoff based on λlocal (default 10e−5) are called
out as the final peaks.

The above steps are followed by MACS to detect narrow
peaks typically reflective of transcription factor binding
sites. However as mentioned earlier, the reads distribution
of histone modification ChIP-seq data is usually continuous.
Hence the peaks are much broader than those of the TF
ChIP-seq data.
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Parameters: Below is the description of the important
parameters of the MACS algorithm along with their default
values.

• –g (genome size): specifies the genome size.

• –shiftsize: the shiftsize specified to shift the tags. If the
model is built, it is computed as half of the estimated
fragment length. If the model is not built, default size
of 100bp is used.

• –mfold: this parameter is used for narrow peak detec-
tion and specifies the lower and upper limits of the
enrichment factor (ratio of treatment to control). The
regions with in mfold range are selected for model
building. The default value is [10,30].

To identify the broad peaks, following two additional
parameters are recommended to be used with MACS1.4
([3]):

• −nomodel: Due to the increase in the data for histone
modification, it is difficult to build a robust shifting
model and hence it is recommended not to build the
model. It uses default shiftsize 100bp and fragment
size 200bp.

• −nolambda: When control is not available, the local
background estimation using the treatment sample
should be skipped. In this case, MACS will not esti-
mate dynamic lambda but rather use constant back-
ground to predict peaks.

In addition to using parameters −nomodel and
−nolambda, the new version of the MACS algorithm
(MACS2.0) uses the parameter −broad for detecting broad
peaks. With this additional parameter, MACS2.0 links
the nearby highly enriched regions. The maximum linking
region is 4 times of the fragment length. This should enable
MACS2.0 to find larger regions, which may be more appro-
priate for capturing the signal from histone modification
events.

2.2 Data Sets

Table 2 briefly describe the data sets used in this study.
We used FoxA1 ChIP-Seq data in human MCF7 cell
line [4] and its corresponding control sample for eval-
uating the algorithms for transcription factor binding
sites. In addition, to assess the performance of algo-
rithms in detecting histone modification sites, we used
H3K4me3 (GSM307618), H3K27me3 (GSM307619) and
H3K36me3 (GSM307620) data sets obtained from mouse
ES cell [5]. These data sets can be downloaded from
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12241.

Dataset Organism Type Control Signal
FoxA1 Human TF yes Peak

H3K4me3 Mouse HM no Peak/Region
H3K27me3 Mouse HM no Region
H3K36me3 Mouse HM no Region

TF: Transcription Factor
HM: Histone Modification

Table 2: Description of data sets.

2.3 Evaluation Methodology

To detect narrow peaks from FoxA1 ChIP-Seq data, we
ran MACS1.4 (from Strand NGS implementation) and
MACS1.4 (from command-line using model building option).
For broad peak detection, we used FER (from Strand NGS),
MACS1.4 (from command-line using advanced parameters,
-nomodel and -nolambda), and MACS2.0 (from command-
line using additional parameter, -broad). In each case, we
evaluated and compared the results in the following ways:

1. Number and width of peaks: The peak calling output
from different algorithms is first compared based on
the number of peaks detected and the distribution of
their width.

2. Overlap (in %bp) between two sets of peaks/regions:
Two sets of peaks and/or regions, which are obtained
from either two completely different algorithms or from
different parameter settings of the same algorithm, are
compared in a comprehensive manner. Let us say, there
are two peak sets P1 and P2, with m and n number of
peaks respectively. In order to compare peak sets P1
and P2, we create a matrix of size m× n, each cell of
which will store the overlap between the two peaks. To
compute overlap between two individual peaks say p1
and p2, we used the following two similarity metrics.

• First similarity metric is given by

Metric1 =
|p1 ∩ p2|
|p1 ∪ p2| (3)

• Second similarity metric is given by

Metric2 =
|p1 ∩ p2|
|p1| (4)

Here, |p1 ∩ p2| represents the number of common
bps between peaks p1 and p2, |p1∪ p2| represents
the union of bps between peaks p1 and p2, and
|p1| represents the width or number of bps in
peak p1.

While first similarity metric is more stringent and
penalises the similarity score if p2 has unique
bps which are not in p1, second similarity metric
does not penalise the score for unique bps in p2.
For instance, if |p1| is 100bp and |p2| is 200bp
with an overlap of 100bp, while score from the
first similarity metric will be 0.50, score from the
second similarity metric will be 1.0.

3. Overlap in genes downstream of the peaks/regions:
Two sets of peaks and/or regions are also compared
based on the overlap in the genes that are within a
distance of 2kb from the center of the peaks/regions.
This is done because even if the peaks from the result-
ing peak sets from different algorithms does not match
perfectly, they may still be potentially regulating the
same downstream genes.
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3 Results and Discussion

Below we present the results obtained on human FoxA1
data set and three mouse histone modification data sets:
H3K4me3, H3K27me3 and H3K36me3. As mentioned ear-
lier, while signal from transcription factor binding sites is
more discrete and typically depicts distinct positive and
negative peaks, signal from histone modification sites is
more continuous. Figure 1 and figure 2 shows the behaviour
of peaks represented by transcription factor binding sites
and histone modification respectively.

Figure 1: Characteristics of transcription factor binding sites
(narrow peaks).

Figure 2: Characteristics of histone modification sites (broad
peaks).

3.1 Detecting transcription factor binding sites
(narrow peaks)

We ran MACS1.4 (Strand NGS implementation) and orig-
inal MACS1.4 from command-line option on the human
FoXA1 data set. The obtained peaks from these two runs
were compared in 1) number, 2) peak width distribution
and 3) peak-to-peak overlap percentage. In addition, we
also compared the genes, which are within a distance of
2kb bp from the peaks obtained from these runs.

3.1.1 Number and width of detected peaks

Table 3 shows the number of peaks obtained from human
FoxA1 ChIP-Seq data by MACS1.4( Strand NGS) and
MACS1.4 (Command-line option). Default parameters
were used in both cases.

The number of peaks obtained from MACS1.4 (Strand
NGS) and MACS1.4 (Command-line) are quite comparable,
however the small difference in the number of peaks may

Algorithm Number of peaks
MACS1.4 (Strand NGS) 12,623

MACS1.4 (Command-line) 13,591

Table 3: Number of Peaks detected by MACS1.4 (Strand NGS
and original command-line option) on human FoXA1
data.

be attributed to the following reasons. During the first step
of MACS where enriched regions are identified to build the
model, while MACS1.4 (Command-line) uses a bandwidth
(sonication size) of 300bp, MACS1.4 (Strand NGS) uses
400bp. In addition, while MACS1.4 (Command-line) uses
a lower and upper cut-off of 10 and 30 respectively for
the m-fold cut-off, MACS1.4 (StrandNGS) uses a sin-
gle parameter ‘enrichment factor’ with a default value of 32.

We also looked at the distribution of the width of the
peaks detected by MACS1.4 (Strand NGS) and MACS1.4
(Command-line). Figure 3 clearly shows that width of the
peaks detected are very similar, indicating that Strand
NGS implementation of MACS1.4 resembles very closely
with original implementation of MACS1.4.

Figure 3: Distribution of the width of peaks obtained from
MACS1.4 (Strand NGS) and MACS1.4 (Command-
line).

3.1.2 Overlap between the peaks

We further wanted to compare each peak obtained from
MACS1.4 (Strand NGS) with its respective peak detected
by MACS1.4 (Command-line) in terms of overlap percent-
age. As described in section 2.3, two similarity metrics
were used to find the answer to the following question:
What percentage of peaks detected by MACS1.4 (Strand
NGS) have an overlap of x% with at least one of the peaks
detected by MACS1.4 (Command-line)?. While the first

similarity metric measures |A∩B||A∪B| , the second metric is less

stringent and measures |A∩B||A| . Figure 4 shows this % of
peaks for both the similarity metrics by varying the overlap
percent threshold x. It can be clearly seen that there is
very high overlap in peaks detected by MACS1.4 (Strand
NGS) and MACS1.4 (Command-line). Further the fact that
there is a slight drop in % of peaks using the first similarity
measure with increase in overlap percentage but practically
no drop using the second similarity measure, indicates that
peaks by MACS1.4 (Command-line) are slightly wider and
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hence MACS1.4 (Strand NGS) peaks are mostly contained
within them. Please note that detecting smaller peaks may
be more helpful in determining the exact location of the
transcription factor binding sites.

Figure 4: Percentage of peaks from MACS (Strand NGS) that
are overlapping with peaks from MACS (command-
line) using two similarity metrics.

3.1.3 Genes downstream of transcription factor
binding sites

In addition to comparing the number, width and overlap
of the peaks detected by MACS1.4 (Strand NGS) and
MACS1.4 (Command-line), we also compared the down-
stream genes that are within a distance of 2kb bp of the
peak centers. We found 4, 678 and 4, 617 genes correspond-
ing to the peaks detected by MACS1.4 (Command-line) and
MACS1.4 (Strand NGS) respectively. The venn diagram in
figure 5 shows the comparison of these downstream genes.
As expected, there is a high overlap between these two sets
with 4, 544 common genes.

Figure 5: Comparison of genes annotated by MACS1.4 (Strand
NGS) and MACS1.4 (command-line) peaks.

3.2 Detecting histone modification sites (broad
peaks)

We ran FER (implemented in Strand NGS), MACS1.4
(with advanced parameters, -nomodel and -nolambda using
the command-line option) and MACS2.0 (with additional
parameter, -broad using the command-line option) on three
mouse histone modification data sets mentioned in table
2. Please note that for transcription factor binding site de-
tection, MACS1.4 was run without advanced parameters,
-nomodel and -nolambda. Since the signal from histone

modification sites is continuous, we will refer to the de-
tected broad peaks as histone modification enriched regions
(HMERs). For evaluation, HMERs obtained from different
runs were compared in number, width distribution and
overlap percentage. Similar to the previous case, we also
compared the downstream genes that are within a distance
of 2kb bp from the center of the detected HMERs.

3.2.1 Number and width of detected HMERs

Table 4 shows the number of HMERs detected by differ-
ent algorithms on all the histone modification data sets.
Both MACS1.4 and MACS2.0 were run from command-
line option with appropriate parameters for broad peak
detection.

Data
Algorithm H3K4me3 H3K27me3 H3K36me3
FER-PS1 21,111 2,854 862
FER-PS2 22,495 5,662 5,631
FER-PS3 36,540 19,494 54,467
MACS1.4 36,292 23,903 55,253
MACS2.0 32,807 2,899 248

Table 4: Number of HMERs detected by different algorithms

One can make several important observations from
table 4. First, the number of HMERs increases in all
data sets with parameter setting 1 (PS1) to parameter
setting 3 (PS3) of FER. Second, number of HMERs
detected by FER-PS3 is comparable to those detected
by MACS1.4. Third, MACS2.0 as expected gives smaller
number of HMERs compared to MACS1.4 because of
merging different regions. However, the difference in the
number of HMERs detected by MACS1.4 and MACS2.0
is much more in H3K36me3 or even in H3K27me3 data
compared to H3K4me3 data. MACS2.0 is a recent version
and may require more in-depth study to understand
how each parameter, particularly the newly introduced
‘-broad’ parameter is being used. Therefore, in this study,
we will focus more on the comparison of FER-PS3 and
MACS1.4. In addition to the number, if the HMERs
obtained from FER-PS3 and MACS1.4 also compare
well on other evaluation measures, Strand NGS can be
confidently recommended for histone modification studies
where detection of broad peaks is the goal.

With the above objective in mind, we looked at the
distribution of the width of HMERs detected by different
algorithms on all three data sets. Figure 6 shows this dis-
tribution. Overall the width distribution is very similar,
however a slight left shift can be observed in HMERs de-
tected by FER-PS3. This indicates that HMERs detected
by FER-PS3 are slightly smaller compared to HMERs de-
tected by MACS1.4. Another interesting point to note
is that MACS2.0 not only produces smaller number of
HMERs, they are smaller in width as well. This is counter-
intuitive to some extent as we were hoping to see smaller
number but wider HMERs. We included MACS2.0 to give
an initial glimpse into the new parameter and results in-
volved however as mentioned earlier, to understand all the
parameters and results of MACS2.0 and compare them
appropriately with other algorithms, a separate in-depth
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study may be needed. Therefore, detailed comparison of
MACS2.0 results is outside the scope of this paper.

3.2.2 Overlap between HMERs obtained from FER-PS3
and MACS1.4

Each HMER obtained from FER-PS3 is compared to
HMERs obtained from MACS1.4 in terms of the overlap
percentage. Question is: What percentage of HMERs
detected by FER-PS3 have an overlap of x% with at least
one of the HMERs detected by MACS1.4?. Again we
use the same two similarity metrics: |A∩B||A∪B| and the less

stringent one |A∩B||A| . By varying overlap percentage x from

20 to 100, we show in figure 7 (A1, A2, and A3) the % of
HMERs for the first similarity metrics and in figure 7 (B1,
B2, and B3) the % of HMERs for the second similarity
metric for three data sets.

Figure 7: Comparison of HMERs detected by FER-PS3 with
those detected by MACS1.4

It is clear from figure 7 that with the first similarity
metric (equation 3), % of HMERs drops rather rapidly
with increase in overlap % while it practically remained
constant between 80 - 90 % when second similarity metric
(equation 4) is used. This suggests that 80 - 90 % of
HMERs detected by FER-PS3 have an overlap of ≥ 80%
with at least one of the HMERs detected by MACS1.4 using
similarity metric 2. However the fact that % of HMERs
drops with increasing overlap % also suggests that HMERs
detected by MACS1.4 have several extra bases which are
not present in HMERs detected by FER-PS3.

3.2.3 Overlap between genes downstream of HMERs

Downstream genes that are within a distance of 2kb from
HMERs detected by FER-PS3 and MACS1.4 are also com-
pared. Figure 8, 9 and 10 shows the venn diagram compar-
ing these downstream annotated genes for HMERs obtained
by these algorithms from data sets H3K4me3, H3K27me3
and H3K36me3 respectively. For all the 3 data sets, very
similar number of downstream genes and high overlap be-
tween them again reinforces the hypothesis that FER-PS3
and MACS1.4 identified very similar enriched regions re-
flective of histone modification sites.

Figure 8: Comparison of genes annotated using HMERs de-
tected by FER-PS3 and MACS1.4 on H3K4me3 data
set.

Figure 9: Comparison of genes annotated using HMERs de-
tected by FER-PS3 and MACS1.4 on H3K27me3
data set.

Figure 10: Comparison of genes annotated using HMERs de-
tected by FER-PS3 and MACS1.4 on H3K36me3
data set.

3.2.4 Parameter sensitivity analysis

Based on the results presented in this study, we’ve estab-
lished that for most practical purposes, FER algorithm
with appropriate parameters settings is similar to MACS1.4
for detecting broad peaks that are reflective of histone
modification sites. Since we recommend using the FER
algorithm in Strand NGS for detecting broad peaks, it is
also important to understand the sensitivity of the param-
eters involved on the results. We use H3K27me3 data set
and study the sensitivity of the parameters of FER on the
number of HMERs detected in the following ways:

• Parameter ‘window size (ws)’ is varied from 100 bp
to 600 bp in increments of 100 bp while keeping other
parameters constant.

• Parameter ‘slide size (ss)’ is varied from 100 bp to
500 bp in increments of 100 bp while keeping other
parameters constant.

• Parameter ’minimum reads in a enriched window (mr)’
is varied from 10 to 60 in increments of 10 while keeping
other parameters constant.
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Figure 6: Distribution of the width of the detected HMERs

• Parameters, ‘ws’ and ‘mr’ are varied together. They
are varied from {100 bp, 10} to {600 bp, 60} with ‘ws’
and ‘mr’ incrementing by 100 bp and 10 respectively
in each step. This is more realistic as the requirement
for minimum reads in an enriched window should go
up as window size increases.

Intuitively, when we increase the ‘ws’ keeping ‘ss’ and
‘mr’ constant, more windows will be called out as enriched
and hence overall we expect to detect more enriched regions.
Similarly, with increase in ‘ss’ or ‘mr’, we expect to detect
less enriched regions because with increase in ‘ss’, less
windows will be considered and with increase in ‘mr’, less
windows will satisfy the threshold. It is interesting to
see how the number of enriched regions changes when we
vary ‘ws’ and ‘mr’ together as they have opposite effect
when varied individually. Figure 11 shows the sensitivity
of different parameters of FER on the number of enriched
regions detected. As expected number of enriched regions
increased with increase in ‘ws’ and decreased with increase
in ‘ss’ and ‘mr’, however the rate of change appears to
be different. While the change in the number of enriched
regions is more linear with the change in ‘ws’ and ‘ss’, it
seems more exponential when ‘mr’ is varied. Finally, it is
interesting to see that when we vary ‘ws’ and ‘mr’ together,
number of enriched regions decreased, however the change

is not exponential as seen with variation in ‘mr’ alone, but
is more linear.

Figure 11: Sensitivity Analysis

4 Conclusions

In this study, we discussed the algorithms implemented in
Strand NGS for analysing ChIP-Seq data. Specifically we
assessed the applicability of the peak calling algorithms
implemented in Strand NGS to detect both binding sites of
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a transcription factor (narrow peaks) and enriched regions
of a histone modification (broad peaks).

For narrow peak detection, both PICS and MACS are
implemented in Strand NGS. We demonstrated using a
human FoXA1 ChIP-Seq data that results obtained from
the Strand NGS implementation of MACS are very similar
to those obtained from the original MACS implementation
(downloaded and executed via command line). For broad
peak detection, we demonstrated using three mouse histone
modification data sets that the broad regions detected by
Find Enriched Regions (FER) algorithm are very similar
to the histone modification events detected by MACS
(with advanced parameters). This is encouraging because
MACS has already been shown to either compare well or
even outperform many existing broad peak callers.

Overall, using the benchmarking results presented in
this paper, we concluded that Strand NGS offers a com-
prehensive and solid approach to analyse ChIP-Seq data.
The algorithms implemented in Strand NGS can be used
to detect both narrow peaks and broad regions, there by
providing a way to study both, cistrome of transcription
factors as well as histone modification events and their role
in gene regulation.
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Strand was founded in 2000 by computer science and mathematics 
professors from India’s prestigious Indian Institute of Science who 
recognized the need to automate and integrate life science data analysis 
through an algorithmic and computational approach. Strand’s segue into the 
life sciences was through informatics products and services for research 
biologists, chemists, and toxicologists that combine advanced visualization, 
predictive systems modeling, data integration and scientific content 
management - over 2000 research laboratories worldwide (about 30% of 
global market share) are licensees of Strand’s technology products, including 
leading pharmaceutical and biotechnology companies, research hospitals 
and academic institutions. With a recent investment by Biomark Capital, 
Strand has grown its established team to over 200 employees, many with 
multidisciplinary backgrounds that transcend computation and biology.

Since 2012, Strand has been expanding its focus to include clinical genomics, 
spanning sequencing, data interpretation, reporting and counseling. Strand 
operates a 10,000 square foot laboratory space with state-of-the-art clinical 
genomics capabilities and is also establishing Strand Centers for Genomics 
and Personalized Medicine in several hospitals around the world to serve 
as outreach points for genomic counseling. Based on the experience gained 
from sequencing, analyzing, interpreting and reporting on clinical samples 
over a wide variety of clinical indications, Strand has developed an end-
to-end solution for clinical labs that handles all stagesfrom analysis to 
reporting. The interpretation and reporting software platform has been 
designed and developed specifically for the medical professional, ranging 
from the molecular pathologist to the physician. By enhancing sequence-
based diagnostics and clinical genomic data interpretation using a strong 
foundation of computational, scientific, and medical expertise, Strand is 
bringing individualized medicine to the world.

For more information about Strand, please visit www.strandls.com,
or follow us on twitter @StrandLife.
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