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Chapter 1

Next Generation Sequencing
Concepts

This chapter introduces concepts and terminology that will be referred to in the rest of the manual.

1.1 Concepts and Terminology

� Read

A read is a sequence of nucleotides called by the sequencer corresponding to the end of a
fragment. The sequence is called out in the direction of growth of the DNA strand, i.e., from
5
′

to 3
′
. If the template strand is the forward one, then the read created will align in the

negative direction to the reference. Conversely, reverse template strands on sequencing give
rise to positively aligning reads.

� Base quality

Each nucleotide output by the sequencer has a corresponding number accorded to it. This is
the quality value and is assigned based on the confidence with which a particular base is
called by the base-calling software.

If the true nucleotide is B and the one estimated by base caller is B
′
, the base error

ε = P
[
B 6= B

′
]
, and the associated base quality QB is given by

QB = −10 log10 ε, (1.1)

� Alignment score

The match of a read to a reference sequence can be represented in the form of two (possibly
gapped) strings placed one over the other. The following figure shows the optimal alignment
of a read, ATATTAGCC, with a portion of the reference with the sequence ATTAAGGC

pos : 1234567890

read: A-TATTAGCC

ref : ATTA--AGGC

The total length occupied by the alignment is 10, and it consists of:

– 6 positions where the read and reference characters match exactly

1



2 CHAPTER 1. NEXT GENERATION SEQUENCING CONCEPTS

– a deletion of length one at position 2 of the alignment

– an insertion of length 2 at positions 5,6, and

– a mismatch at position 9

The alignment score of a match is defined as the percentage of the alignment length which is
occupied by exactly matching characters (60% in the above example).

� Depth of coverage

The number of reads that align to a particular postion of the reference is said to be the
coverage at the position. This number when averaged across all positions of the reference
gives the average depth of coverage. Obviously greater sequencing depths lead to higher
accuracy in later deductions.

� Mate pairs and paired-end reads

Paired-end reads and mate-pairs refer to methodologies that give information about two
reads belonging to a pair. The basic idea involves shearing DNA into random fragments of a
selected size, called the insert length, and then sequencing both ends of each fragment.

In addition to the usual sequence information, the physical distance between the two reads in
the sample genome is also known. The extra distance information provides a dramatic increase
in alignment accuracy, by providing a kind of linked scaffolding, useful in reconstructing the
parent genomic sequence. This is especially helpful in identifying structural variants, and
aligning across repetitive regions.

‘‘Paired-end sequencing” sequences both the forward and reverse template strands of the
same DNA molecule. Each end is separately sequenced; the two sequences are termed paired
end reads.

The distance between paired-end reads is limited by the cluster generation technology to ∼
300bp (200-600bp). In ‘‘Mate-pair sequencing” tags that are sequence belong to ends of a
much larger molecule, typically between ∼ 2 and 10kbps.

� Mapping quality of reads

Most alignment algorithms assign quality scores to a read based on how well the read aligned
with the reference. These scores are relevant in SNP detection because they measure the
likelihood of a read originating from the suggested position on the reference. Even if the
individual bases on a read are called with high quality values, the read may align imperfectly
with the reference. The mapping quality score takes into account the inserts, deletes, and
substitutions necessary for alignment at a particular position. Note that unlike alignment
score which considers only the sequences of the read and the reference, mapping quality can
incorporate other considerations like the presence of similar sequences in the genome, the
location of the mate (in case of mate-pair libraries) etc.

� Read count distribution

Consider an experiment that sequences DNA fragments from a selected genome. In the
absence of biases due to various biological phenomena such as copy number variation, hotspots
in the chromatin structure prone to easy breakage, PCR bias etc., the reads will map to the
reference genome fairly uniformly, showing no particular regional preference. The resulting
read count for any region would then be expected to follow a Poisson distribution fairly
closely, with distribution parameters dependent on (i) the total number of reads, (ii) the
length of the region and (iii) the length of the sequenced portion of the genome.

� Insert length distribution

The distribution of the insert length, i.e., the distance between mate pairs or paired-end
reads is assumed to be Gaussian with a given mean and variance, which is based on the
technology and library preparation protocol.
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� Duplicate reads

Duplicate reads are identical to each other in sequence (but possibly differing in quality
values), and are common next-generation sequencing artifacts. The maximum expected
number of duplicates are easily computed based on the length of the read as well as the
sequencing depth. Often, duplicates are far in excess of this number, creating large, sharp
spikes in the genomic read density profile. This biased representation occurs as a result of
hotspots for chromosomal breakage due to the inherent chromatin structure, or perhaps due
to a sequencing bias.

� Normalization of read counts based on sample concentration

Different experiments often start by processing varying amounts of DNA and using various
techniques for isolation and fragmentation. Thus, comparison across samples requires
normalization by appropriately scaling read counts.

� Repeat regions in the genome

Large mammalian genomes are often repetitive in nature. Reads from repeat regions do not
align uniquely and are referred to as multiply mapping reads. Algorithms either discard
reads mapping multiply to the genome, or assign them probabilistically.

� Sequencing error

The reads generated by an NGS system may differ from the actual sample sequence due to a
variety of errors ranging from sample contamination, PCR errors to instrument errors. The
base quality associated with each base of a read is a rough measure of the error.

� Homopolymer

A homopolymer is a repetitive sequence of a single nucleotide, e.g., AAAAAA. Some sequencers
exhibit imprecise representations of homopolymers due to saturation of signal intensity while
incorporating nucleotides. Their immediate neighbors are also subject to an increase in
‘‘carry forward errors” which affect the next flow of the same dNTP. Such regions need to be
handled carefully by analytical algorithms.

� Alignment errors

These are not strictly part of NGS technology, however, in software analysis tools such as
Avadis NGS that directly handle aligned data, slips in alignment can lead to completely
erroneous conclusions. Taking into account the read mapping qualities when provided could
help reduce alignment errors.

� Paired read models

In a pair of reads, one will be labelled first (mate1), and the other second (mate2). Given
that each can have two directions (when aligned against the reference genome), we have 8
possibilities which are shown in the following picture.
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Figure 1.1: Mate-pairs and paired end reads: Relative orientations when aligned to the reference
genome under normal conditions

The terms paired-end and mate-pair are sometimes used interchangeably in the sequencing
community. In the context of Avadis NGS we make the following assumptions:

Vendor Library Model
454 Roche Mate pair Models 4,5
Illumina Mate pair Models 3,7

Paired end Models 2,6
ABI SOLiD Mate pair Models 4,5

Paired end Models 2,6
Ion Torrent Paired end Models 3,7

Table 1.1: Paired-end, mate-pair orientations

� Read-lengths

Some next-generation technologies such as Illumina and ABI use fixed-length reads. The
reads may experience some minor variation in length post quality filtering process such as
read trimming, however for the most part they can roughly be said to have a certain fixed
length. Thus each entire read can be considered to provide the same unit of information. On
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the other hand, technologies such as 454-Roche, use variable-length reads; one read now may
be ten times the length of another.
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Chapter 2

ChIP-Seq Analysis

2.1 Introduction

ChIP (chromatin immunoprecipitation) is a technology that isolates a library of target DNA sites
that bind to a particular protein in vivo. The ChIP process selectively enriches specific crosslinked
DNA-protein complexes using an antibody against the protein of interest. ChIP-Seq combines
ChIP with massively parallel sequencing technologies and is used to identify the interaction pattern
of a protein with DNA and the surrounding chromatin structure. It provides a view of epigenetic
factors influencing gene expression and is complementary to genotype and expression analysis.

Identification of binding sites associated with transcription factors and histone methylation are
among the most important applications of ChIP-Seq.

� Transcription factors

The first step in the gene expression process is transcription, which involves gene activation
by a set of proteins, mainly transcription factors. Transcription factors contain one or
more DNA binding sites (typically short DNA sequences, ∼ 4 - 30 bps in length), which
attach to specific sequences of DNA adjacent to the genes that they regulate. They control
transcription either by activating or repressing the recruitment of RNA polymerase to these
genes.

� Histone methylation

Histone proteins compress the DNA into a compact chromatin package. Modifications on
these proteins affect the access of regulatory factors and complexes to the DNA and thus
influence gene expression. Histone methylations in particular have been clearly shown to
play a key role both in gene activation and repression [5].

Determination of the binding sites from ChIP-Seq data is described briefly in Section 2.1.1. This
now raises the question of seeking patterns or motifs that might be common to them, indicating a
similar sequence to which the protein of interest would attach. This is done via motif discovery
described in Section 2.1.2. Brief descriptions of the associated algorithms used in Avadis NGS
are provided in Section 2.2.

2.1.1 Binding Site Identification

In the absence of biases, read counts from a DNA sequencing experiment will roughly follow a
Poisson distribution with parameters dependent on (i) the total number of reads, (ii) the length of
the region and (iii) the length of the sequenced portion of the genome.

7



8 CHAPTER 2. CHIP-SEQ ANALYSIS

In a ChIP-Seq experiment, select regions on the genome are enriched due to proteins that bind to
them. The binding sites are fairly small in size, much smaller than the read-size. Only reads to
which proteins have bound are retained, all others are discarded. The number of reads vary with
the factors outlined earlier; additionally they also reflect (i) the number of sites on the genome to
which the studied protein is capable of binding, and (ii) the affinity or efficiency with which the
protein binds to a particular site.

At a fundamental level, all algorithms infer binding sites by determining those portions on
the genome with higher-than-expected read counts. Duplicate reads is a technological artifacts
frequently observed in ChIP-Seq data and must be accounted for while identifying binding sites. A
few additional issues unique to ChIP-Seq data are presented below:

� Repeat regions in the genome

Large mammalian genomes are often repetitive in nature. Reads from repeat regions do
not align uniquely. The alignment process usually discard reads mapping multiply to the
genome. This could result in partially represented peaks, with a significant portion of the
peak knocked off. Consequently, one peak might easily be misinterpreted as two or more.

� Shifted read density on the positive and negative strands

In practice, reads from the two strands are observed to be slightly shifted from the precise
binding sites. This shift results from the fact that reads represent fragment ends, instead of
precise binding sites. The two reads do not typically cover the entire length of the fragment.
Consequently, read densities follow a bimodal pattern, as shown in Fig. 2.1 with the mode
shifted upstream on the positive strand and downstream on the negative strand. The size
of the shift δ, roughly corresponds to the difference between the size of the parent DNA
fragment containing the binding site and the size of the ensuing read. Binding site detection
algorithms must correct for the shift ensuring that the combined read densities follow a
unimodal distribution centered at the binding site.

� Evaluation of closely-spaced multiple binding sites

When two binding sites are very close on the genome, the corresponding data might be clubbed
together as evident of only one peak. Data must therefore be evaluated for differentiation
into neighbouring peaks.

� Regional biases in data along the genome

Biases in read density profiles can be estimated by comparing control vs. immuno-precipitated
sample profiles. Control data provides a numerical background for comparative identification
of significantly enriched regions. Using this, an enrichment score relative to the control, can
be computed for each binding event. It also provides a mechanism for identification of false
positives.

2.1.2 Motif Discovery

Having found a number of candidate binding regions via the peak finding algorithm, the next step is
to investigate if they share an underlying sequence signature or motif. A motif discovery algorithm
sifts through a collection of sequences and returns a set of motif predictions with associated
locations on the sequences and confidence scores.

What is a motif
Very simplistically, a motif is a short string of letters {A,C,G, T} which occurs more frequently
than expected in the sequences of interest, and may be indicative of a common transcription factor
binding site. Motifs are not rigidly described by a exact occurrence of specific nucleotides but
more typically, by a number of similar, frequently-present words combined into a single flexible
representation. Popular motif formats include:
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Figure 2.1: Bimodal structure of read densities at the binding site

� A single sequence based format that employs the IUPAC code convention to represent 2
or 3 nucleotide degeneracy, e.g., AYGGNNNNGR, where Y ≡ {C, T}, R ≡ {A,G}, and
N ≡ {A,C,G, T}. While this representation has the advantage of being compact, it disregards
a fair amount of information.

� A probabilistic approach that views a motif as a short probabilistic string and uses a Position
Weight Matrix (PWM) for its representation. The PWM matrix gives information of the
frequency of each base at each position of the motif. It assumes positional independence, in
other words, it assumes that each position contributes independently to the binding site.

Example:

Consider a k-length sequence S = {S1, S2, . . . , Sk}. Each member of the sequence takes
values among {A,C,G, T} with some associated probability, p, e.g.

S1 =

{
A p = 0.9
G p = 0.1

, S2 =


A p = 0.4
C p = 0.1
G p = 0.4
T p = 0.1

, S3 =


A p = 0.3
C p = 0.2
G p = 0.3
T p = 0.2

, S4 =

 G p = 0.4
C p = 0.1
T p = 0.5

,

etc.

A simple representation for a k-length probabilistic sequence is given by a Position Weight
Matrix (PWM). A PWM provides position-specific letter frequencies through a matrix of size
4× k, with elements PWM [i][b] = P [Si = b], where i ∈ [1, k], b ∈ {A,C,G, T}. For example,
the k-length motif shown earlier could be represented as
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Figure 2.2: Example Motif Logo

PWM =


0.9 0.4 0.3 0.0 . .
0.0 0.1 0.2 0.1 . .
0.1 0.4 0.3 0.4 . .
0.0 0.1 0.2 0.5 . .


A
C
G
T

The PWM is conveniently visualized by a graphical sequence logo representation, where the height
of letters at each position is proportional to the information content at that position. In this
representation, the relative height of the letters {A,C,G, T} indicate the relative presence of the
bases at that position, while the total height reflects the sequence conservation.

The PWM illustrated in the above example is shown in Fig. 2.2. Note that the third position of
the motif is blank, due to the fact that all the bases are almost uniformly present.

Very often, motifs observed across sequences are in a spaced dyad arrangement, consisting of two
words or short strings, separated by a short stretch of an arbitrary number of unspecified bases
called spacers, e.g., W1xxxxxW2 has a spacer of length 5. Spaced dyads may be represented in
either of the two formats discussed earlier.

Motif discovery methods
A comprehensive motif search involves searching the entire space of dyads and is computationally
immense. Even after restricting the two words in the dyads to strings of size between 3 and 6, and
the spacers to a maximum size of d nucleotides, the computational complexity remains daunting.
Popular motif discovery methods use various techniques to restrict the search and fall into two
categories:

1. Word enumeration: This technique views motifs in the single-sequence format and counts
the number of occurrences of a motif in the sequence data. A sequence is considered an
instance of the motif when the number of mismatches between the sequence and the motif
falls below a threshold. Motifs with the highest over-representation are selected.

2. Local search technique: This technique views motifs as PWMs and involves deterministic
motif optimization methods such as Expectation Maximization (EM). The algorithm involves
pre-selection of motifs via a number of possible methods, and then iterative refinement of
the selection. The primary challenge for this approach is in restricting the complexity of the
search via clever initialization.
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2.2 Overview of Algorithms

Avadis NGS presents two methods for binding site identification. One is based on the PICS
algorithm, [33] and the other is the MACS algorithm, [34], briefly described in Sections 2.2.2 and
2.2.3 respectively. The motif discovery algorithm used is based on GADEM, [23], and is presented
in Section 2.2.4. It also includes a simple enriched region identification method that can be used
to quickly identify regions with a large number of reads.

2.2.1 Enriched Region Detection

The Enriched Region Detection algorithm is an extremely fast way of identifying regions with high
density of reads. It uses a sliding window approach to identify stretches with large numbers of
reads. Unlike PICS and MACS it does not check the orientation of reads or the shape of the peaks
formed by reads.

A window is considered to be enriched in a run without a control sample if the number of treatment
reads that fall in the window exceeds the ‘‘Minimum reads in window” criteria. For the window to
be considered enriched in a run with a control sample, the following additional critera needs to be
met:

nt
nc

Sc
St

> e

where

� nt is the number of treatment reads in the window,

� nc is the number of control reads in the window,

� Sc is the total number of reads in the control sample,

� St is the total number of reads in the treatment sample, and

� e is the enrichment threshold

The equation essentially says that if the treatment sample had the same number of reads as the
control sample it would still have at least e-fold more reads in this window. Consecutive enriched
windows are merged into a single region and the region is saved if the region size and number of
reads in it exceed the user specified thresholds.

2.2.2 Peak Detection using PICS

PICS (Probabilistic Inference for ChIP-Seq) [33] uses forward and reverse read count information
to estimate peaks associated with binding sites. Closely-spaced, multiply occurring binding sites
can be identified through a Bayesian approach which models the DNA fragment length distribution
as prior information. PICS accommodates removal of other inherent biases by allowing comparison
against a control sample. PICS also provides a Mappability Profile which helps remove biases
due to genome repetitiveness.

PICS uses t distributions with 4 degrees of freedom to model the start positions of both forward
and reverse reads. Distribution parameters include:

� µ, the binding site position,

� δ, the shift between the peaks of the forward and reverse hills, and
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Figure 2.3: Read density at a binding site

� σf and σr, the variability in length for forward and reverse DNA fragments

depicted in Fig. 2.3. These parameters are estimated through localized measurements of read
concentrations. The algorithm accommodates multiply occurring binding sites via weighted mixtures
of t distributions. Prior distributions reflect underlying behavior assumptions for parameters δ, σf
and σr. Details regarding the read distributions and the priors are available in Sections 2.3.1.1
and 2.3.1.2.

The PICS algorithm incorporates the following steps:

1. Inclusion of a user-provided mappability profile: As seen earlier in Section 2.1.1,
repeat regions in a genome create reads that cannot be uniquely mapped. Such regions can
be identified purely on the basis of the reference sequence and a corresponding Mappability
Profile. If a Mappability Profile is provided by the user, PICS discards reads that align to
regions demarcated by the Mappability Profile, and uses interpolative techniques to fill in
the gaps. See Section 2.3.1.3 for details.

2. Preprocessing: PICS follows a sliding window approach, where the read counts aligning to
a window are computed across the genome for both forward and reverse reads. Windows
with counts falling below a minimum window count threshold (Minimum Forward & Reverse
Read Count in a Window) are discarded. Overlapping significant windows are merged to
eventually create a set of disjoint significant windows or regions. Regions with fewer reads
than a required threshold (Minimum Forward & Reverse Read Count in a Region) are
discarded. Each region is assumed to contain one or more binding sites and is individually
analysed. Summits in each window, i.e., locations with local maximum read counts are
output as predicted binding sites. Further information can be obtained in Section 2.3.1.4.

3. EM algorithm: The Expectation-Maximization procedure estimates the model parameters
given the observed data. It begins by assuming a fixed number of binding sites k in a
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region and an initial distribution for the model parameters, and arrives at a final estimate
by progressively iterating two steps: The E-step, and the M-step. The EM algorithm is
described in detail in Section 2.3.1.5.

4. Peak merging: Peaks with overlapping binding events are detected and merged and their
parameters recomputed. Details are provided in Section 2.3.1.6.

5. Peak filtering: Binding events with atypical parameter estimates, such as atypical average
DNA fragment length estimates or large fragment length variability (hard-coded to be > 200)
are filtered out. The filter criteria are elaborated in Section 2.3.1.7.

6. Computing enrichment scores: The significance of a binding event is determined based
on an enrichment score. Refer to Section 2.3.1.8 for further information.

7. Estimating the False Discovery Rate (FDR): When control data is present for com-
parison, an FDR can be computed as a function of the enrichment score. Section 2.3.1.9
describes the details.

2.2.3 Peak Detection using MACS

The MACS (Model-based Analysis of ChIP-Seq) algorithm described in [34] is a simple yet effective
technique for peak detection. It empirically models the shift size of ChIP-Seq reads and attempts
to capture local biases in the genome via a dynamic Poisson distribution.

Avadis NGS includes version 1.3.7.1 of the publicly available MACS implementation with
portability fixes that were necessary for it run in the Avadis framework.

The main steps of the algorithm are outlined below:

1. Find preliminary peaks

The fundamental idea of this step is to identify windows with read count more than m times
the count expected from a random read distribution, where m is the enrichment factor. This
is achieved by sliding a window of size 2× BW across the genome, and counting forward
and reverse reads that lie in the window. This total count is compared against a threshold
Rmin = m× 2×BW ×N/G, where N is the total number of reads and G, the total size of
the sequenced genome. All windows with read count greater than the threshold Rmin are
selected.

2. Model inter-peak shift

This step is based on the assumption that the inter-peak shift δ at all binding sites will be
approximately the same. It therefore attempts to pool a large number of suspected binding
sites and estimate the inter-peak shift from this data. Accordingly, it randomly picks a
suitably large number (1000) from the selected windows. In each case, it separates forward
and reverse reads and identifies the corresponding peaks. If the forward-read peak is to the
left of the reverse-read peak, the reads are aligned according to the midpoint. The reads are
then pooled and two peaks are identified as before. The distance between the modes of the
peaks gives δ.

3. Handling duplicates

MACS removes duplicate reads in excess of what is warranted by the sequencing depth. It
compares the number of duplicate reads against a threshold TD, and removes the spillover.
This threshold is based on the number of duplicates that will correspond to a p-value of 10−5

assuming a random genome-wide read distribution. For more details refer to [34].
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4. Correcting for δ

The remaining reads are shifted by δ/2; the forward reads towards the right and the reverse
reads towards the left.

5. Finding candidate peaks

Candidate peaks are identified by sliding a window of size 2δ across the genome. Significant
read enrichment is concluded if the observed read count N2δ > j∗, where

j∗ = argminj

 ∞∑
i=j

e−2δλ(2δλ)i

i!
≤ 10−5

 , (2.1)

and λ = λBG = N/G, the expected background density of reads.

Overlapping candidate peaks are first merged. Then each read position is extended upto δ
bases from its center, so as to make its final length 2δ. The location with the highest number
of reads is the summit and is predicted as the precise binding location.

6. Correcting for local biases

MACS attempts to apply local corrections to each candidate peak by using a dynamic λlocal
instead of the λBG estimated from the whole genome.

� In the absence of a control sample

λlocal = max(λBG, λ5k, λ10k), (2.2)

where, L× λL = number of reads in the ChIP sample in a window of size L centred
around candidate peak location.

� In the presence of a control sample

The total control read count in the control sample is first linearly scaled so as to equal
the total ChIP read count.

λlocal = max(λBG, λ1k, λ5k, λ10k) (2.3)

where, L× λL = number of reads in the control sample in a window of size L centred
around candidate peak location.

MACS provides an option to turn the correction mechanism off. In this case, the λlocal = λBG.

7. Peak detection

The p-value of each candidate peak is called using λlocal thus removing false positives due to
local biases. Finally, candidate peaks with p-values below a user-defined threshold p-value
are called. The ratio between the ChIP-Seq read count and λlocal is reported as the fold
enrichment.

Note that a couple of options offered by the MACS code have been turned off in Avadis NGS.
MACS has the ability to produce a saturation table by reporting, at different fold-enrichments, the
proportion of sites that can still be detected using 90% to 20% of the reads. MACS also provides
an option to skip the initial estimation of parameter δ, and to use a global user-provided value
both for δ and λ. Both features are absent in Avadis NGS.
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2.2.4 Motif Detection using GADEM

GADEM (Genetic Algorithm guided formation of spaced Dyads coupled with an EM algorithm for
motif discovery) uses word-enumeration techniques to create initial motif models and subsequently
refines these by a local search technique, an EM algorithm. An initial subset of motifs is created
by randomly combining over-represented words in the data. The subset is modified over various
iterations through genetic operations. The selected motifs act as seeds to be progressively optimized
by the EM algorithm. As the EM algorithm only provides a local optimum, its efficacy depends
strongly on the quality of the input motif. Thus, intelligent filtering of motifs combined with local
EM optimization help identify good quality candidate motifs in datasets.

The GADEM algorithm:

Preprocessing: To save on runtime, the algorithm first creates a random subset of the initial
data. All further motif searches in all subsequent runs are restricted to this subset. However, once
motifs are found, their presence is verified in the entire parent data set. See Section 2.3.2.1 for
details.

The general steps followed by one run of GADEM are outlined below:

1. Initial population generation: A list of frequently occurring short words in the subset
is created, and ordered according to prevalence. Spaced dyads are generated by randomly
choosing two words and then picking the length of the intermediate spacer. An indexed
population of such spaced dyads is thus created to the desired size. Section 2.3.2.2 provides
further information.

2. Motif optimization and evaluation: Each dyad in the indexed population is represented
as a PWM. This seed PWM now experiences a number of operations:

(a) EM optimization: Starting with the seed PWM, the EM algorithm toggles between
estimating the positions of the motif in the E-step and updating the motif letter
frequencies in the PWM in the M-step. After a fixed number of such iterations, it
outputs a more refined PWM. Note that the size of the PWM is always preserved
through all optimizations; in other words, the optimized motif retains the original length
k of the seed spaced dyad. For the particulars of the EM algorithm and examples, refer
to Section 2.3.2.4.

(b) Scoring and identification of binding sites: Sequences in the entire dataset are
scored using the optimized 4 × k PWM. This is done by considering each k-length
substring in the sequences and computing its probability of occurrence under the PWM.
For each score, associated p-values are derived representing the probability that a
random string of the same length has a better (lower) score. A binding site is declared
when the p-value of its PWM score falls below a threshold. Further details are available
in Section 2.3.2.5.

(c) Fitness evaluation: The binding sites corresponding to one PWM are collected and
aligned and their collective significance is represented by a fitness score. The fitness
score represents the efficacy of the motif and incorporates the number of associated
binding sites, how strongly the binding sites differ from the background, etc. Fitness
scores are relevant in comparing and ranking motifs. Section 2.3.2.6 includes additional
information.

The three steps are repeated for each of the dyads in the population and a comprehensive set
of motifs derived.

3. Population evolution through genetic operations: Populations evolve using genetic
operations through several generations. The best ranked motifs from the current population
are retained in the new generation. The rest are supplemented by mutations and crossovers,
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further elaborated in Section 2.3.2.7. Each dyad in each generation undergoes the motif
optimization and evaluation step.

4. Post-processing: At the end of the desired number of generations, motifs with fitness
values less than a threshold are reported. These motifs are checked for prevalence in the
data, relevance of information content, and redundancy before being finalised.

(a) Prevalence in the data: The motifs are required to satisfy a minimum frequency of
occurrence in the data.

(b) Motif trimming: A selected PWM might be significant overall, but yet retain a
small number of redundant locations. The motif trimming step attempts to trim away
these locations. Extension and trimming operations are performed at each binding site
corresponding to a motif.

(c) Motif filtering: The set of motifs is checked for redundancy. Motifs judged close
relatives are only represented once.

Details regarding these steps are available in Section 2.3.2.8. The final set of motifs along
with their binding sites are output.

At the end of one run, binding sites of all declared motifs are masked in the input data and the
entire process rerun for further motif discovery. The algorithm stops when no more motifs can
be found, or when a maximum number of runs has been reached. See Section 2.3.2.9 for more
information.

2.3 Mathematical Details of the Algorithms

2.3.1 PICS Algorithm

As discussed in Section 2.2.2, PICS is a peak-finding algorithm that takes a number of aligned
reads as input and outputs candidate binding sites. PICS uses a Bayesian formulation, with
DNA fragment length distribution as prior information to model read locations across the genome.
Mathematical details regarding the model and priors as well as the working of the EM algorithm
used to estimate the model parameters are provided here.

2.3.1.1 Modeling Read Distributions

For each candidate region, the read distribution for forward and reverse reads is modeled. PICS
uses an approach that models distributions of fragment ends, rather than directly modeling sequence
counts as is usually done. Let fi denote the start position of the ith forward read, i = 1, ..., nf and
rj denote the start position of the jth reverse read, j = 1, ..., nr. Start positions of forward and
reverse reads are each modeled in this manner independently with different parameters.

PICS uses t distributions for this modeling. A univariate t-distribution of a random variable X
with parameters ν, µ, σ2 denoted by tν(µ, σ2), is defined as follows:

(X|U = u) ∼ N (µ,
σ2

u
)

where
U ∼ gamma(

ν

2
,
ν

2
),

and its density at x denoted by tν(x;µ, σ2) is

Γ(ν+1
2 )

√
νπ Γ(ν2 )

(1 +
(x− µ)2

ν
)−

ν+1
2 .
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For a single binding event in a region, the start positions fi and rj are modeled by t-distributions
with 4 degrees of freedom, with

fi ∼ t4
(
µ− δ/2, σ2

f

)
and rj ∼ t4

(
µ+ δ/2, σ2

r

)
where µ represents the binding site position, δ is the shift between the peaks of the forward
and reverse hills (roughly equal to the average DNA fragment size), and σ2

f and σ2
r measure the

variability in DNA fragment lengths.

A similar formulation represents multiple binding events in a region, but using weighted mixture
models. In this case,

fi ∼
K∑
k=1

wkt4
(
µk − δk/2, σ2

f,k

)
and rj ∼

K∑
k=1

wkt4
(
µk + δk/2, σ

2
r,k

)
,

where the subscript k represents the kth binding site position in the region, and weight wk is
the corresponding relative proportion of reads and K represents the total number of binding
events. The model is completely characterized by 5K − 1 parameters, Θ ≡ {wk, µk, δk, σf,k, σr,k},
k = 1, 2, . . . ,K (under the constraint that the weights sum to 1).

2.3.1.2 Prior Distributions

PICS estimates the model parameters Θ outlined in Section 2.3.1.1 assuming certain underlying
behavior for the DNA fragment distribution. Priors defined include

1. independent but identical inverse gamma priors for σ2
f and σ2

r , viz., σ2
f , σ

2
r ∼ IG(α, β).

2. prior for the shift given by (δk|σ2
f , σ

2
r) ∼ N (ξ, ρ−1/σ−2f +σ−2r ), where ξ is the mean fragment

length, and ρ is a scaling factor for the corresponding spread.

Setting parameters for priors: The parameters α, β, ξ, and ρ can be set through the Tools →
Options menu, under the ChIP-seq Analysis Algorithms tab, PICS selection. These parameters
can be tuned according to the experimentally obtained length distribution of the DNA fragments.
In PICS, the prior parameters α, β, ρ are set to values which make the prior distribution non-
informative; large values of the parameter β result in a fairly flat (non-informative) prior for σ2

f ,

and σ2
r . The prior parameter ξ is set based on data as described below.

For a DNA fragment starts at position fi and ends at rj , the length is given by rj − fi + 1. As
fi and rj are assumed independent, the variance in the fragment length can be approximated by
σ2
f + σ2

r . The expected variance of the DNA fragment length is then 2β/(α− 1).

The shift δk between the forward and reverse read distributions is approximated by the diference
in the average length of the DNA fragment and the average read length. The prior parameter ξ
has therefore been set at the value of the (average observed fragment length − average observed
read length).

For example, in [33] the parameters chosen are α = 20, β = 40000, ξ = 175, and ρ = 1. This
corresponds to normally distributed DNA fragment lengths with mean = 175 bps, and (expected)
standard deviation given by

SD =

(
β

2α− 1

)1/2

=

(
40000

39

)1/2

≈ 32

These values were based on DNA fragment sizes on the order of 100-250 bps.
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2.3.1.3 Mappability Profile

A Mappability Profile helps to identify problematic regions that might cause multiply mapping
reads. This is constructed by considering the set of all possible sequences of a length L arising
from the genome. The number of times a sequence repeats in the genome is then counted. Regions
with number of repeats greater than one are marked. The Mappability Profile depends on the
length L of the sequence; longer sequences tend to be less repetitive. Further, the Mappability
Profile is only dependent on the reference genome and so it may be generated irrespective of the
experimental data. PICS allows the user to provide their own mappability profile.

2.3.1.4 Preprocessing

PICS creates read count profiles by summing localized read counts over disjoint candidate regions.
The details of the counting procedure are as follows:

� All duplicate reads are removed.

� For each sliding window of length w the number of forward strand reads in the left half and
the reverse strand reads in the right half are counted. The window is shifted by s and the
process repeated.

� The read count per window is checked for both forward and reverse reads. Windows with
counts falling below a minimum window count threshold are discarded. Overlapping windows
are merged to obtain disjoint candidate regions. The read count per region is also checked
against a minimum regional count threshold for both forward and reverse reads. Regions
with fewer reads than the required threshold are discarded.

2.3.1.5 Expectation-Maximization (EM) Algorithm

EM is an iterative procedure for maximum likelihood estimation of parameters in problems where
the observed data lead to a difficult maximization problem and where an augmented dataset
(including missing or latent data) can make the maximization problem more tractable. The
algorithm can be modified to deal with penalized likelihood maximization arising in Bayesian
estimation problems like the one here. General details of the EM algorithm can be found in
Appendix B.

The model used in PICS described above is a mixture model discussed in Appendix B for resolving
which the EM algorithm is a suitable technique. A complete-data problem that will facilitate the
application of the EM algorithm is formulated by the addition of latent data in the form of the bind-
ing site affiliation for each read, denoted by a binary vector variable Zdi = (Zdi1, Zdi2, . . . , ZdiK),
d = f, r, where the kth component Zdik is 1, if the read arises from site k and the other components
are 0.

In this particular problem with the t-distribution, treating U defined above as an additional latent
variable makes the EM algorithm application simpler making the M-step a weighted least-squares
algorithm. Thus besides Zdi, Udi = (Udi1, Udi2, . . . , UdiK) for i = 1, 2, . . . ,K are the latent
variables used to define the complete-data problem.

In order to write down the complete-data log-likelihood, the following distributions are used:

(di|Udik = udik, zdik = 1, µk, σ
2
dk) ∼ N (µdk,

σ2
dk

udik
),

(Udik|zdil = 1) ∼ gamma(2, 2),

Zdi ∼ multinomial(1;w1, w2, . . . , wK).
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The penalized log-likelihood is then written in terms of these distributions as the sum of the
log-likelihood based on complete-data and the logarithm of the prior distributions. In view of the
multinomial nature of the Z distribution and the nature of the appearance of u in the normal
distribution’s variance, both the Z’s and U ’s appear in linear forms in the penalized complete-data
log-likelihood and so it becomes fairly easy to compute the conditional expected value of the
penalized log-likelihood; only expected values of U ’s and Z’s need to be evaluated.

Suggested initial estimates for model parameters to start the EM iterations are described in Section
2.3.1.2. Users have the option to reset these values.

The EM algorithm alternates between computing the expectation of the log-likelihood of the data
(under the current parameter estimate) in the E-step and maximizing the log-likelihood with respect
to the parameter space in the M-step.

These expected values are:

z̃dik =
wkt4(di;µdk, σ

2
dk)

K∑
k′=1

wk′t4(di;µdk′ , σ
2
dk′)

ũdik =
5

4 + (di−µdk)2
σ2
dk

.

This then is the E-step.

For the M-step, a conditional approach is used, whereby maximization is done first with respect to
the w, µ, δ’s conditional on (σ2

f , σ
2
r) and then maximization is done conditional on the w, µ, δ values

obtained. This is called the Expectation--Conditional-Maximization (ECM) algorithm. Please refer
to [33] for formulas based on this approach for the M-step.

Interpolating missing reads: Reads from repeat regions on the genome are identified by the
marked regions in the Mappability Profile and are discarded. The E-step of the EM algorithm
now breaks up the log-likelihood over the marked sections of the candidate region and recalculates
using appropriately interpolated read counts.

The algorithm computes parameter estimates Θ̂k for each value of k, k = 1, 2, . . . kMAX . The
maximum value kMAX can be modified by changing the Max Number of Peaks per Region under
the ChIP-seq Analysis Algorithms tab, PICS selection from the Tools → Options menu. The
default value is 5 peaks, and the algorithm requires the values to lie between 1 and 15.

The appropriate number k of binding sites is chosen by computing the Bayes Information Criterion
(BIC) for each value of k from 1 to kMAX and selecting k as that value for which the criterion
is the largest. The BIC criterion is 2×the conditional expected value of the log-likelihood at the
converged parameter values −(5k − 1)log(nf0 + nr0), where nf0, nr0 are the number of forward
and reverse reads respectively. For more information on BIC, see Appendix A.

For more details of the PICS algorithm, see [33].

2.3.1.6 Peak Merging

Peaks with overlapping binding events are detected and merged and their parameters recomputed.
Regions with multiple binding events, K > 1, are rechecked for overlapping binding events as
follows: Each pair of adjacent peaks with means µi and µi+1, (µi < µi+1), and variances σ2

i and
σ2
i+1 meeting the condition µi + σi ≤ µi+1 − σi+1 are merged. The parameters of merged binding

events are computed by solving moment matching equations given in [33].
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2.3.1.7 Peak Filtering

Binding events with atypical parameter estimates, such as atypical average DNA fragment length
estimates or large fragment length variability are filtered out. Events satisfying either of the two
conditions listed below are removed:

1. δmin < δ < δmax (where δmin and δmax are user-given or default values); or

2. σf , σr < 200

2.3.1.8 Scoring

To decide the statistical significance of a binding event, it is accorded an enrichment score.

� Single sample case: The EM algorithm delineates the regions where the peak has been
detected. The region around the mean µf , expected to contain 90% of the forward reads,
corresponding to µf ± 2.13σf is considered. Forward read counts FChIP are computed for
this region. Similarly, the reverse read counts RChIP are obtained from the reverse peak.
The minimum of the forward and reverse counts gives the binding site enrichment score.

� Two-sample case: Read counts are computed for the ChIP sample as outlined in the single
sample case. For the control sample, the corresponding reads are counted, using the regions
defined in the ChIP sample. Ratios of the forward read counts (ChIP/Control) are computed,
so also ratios of the reverse read counts. The enrichment score is the minimum of these ratios
multiplied by a normalization factor, which accounts for the difference in the total number
of reads in each case. Thus the relative enrichment score is given by

Ncontrol
NChIP

·min

{
FChIP + 1

FControl + 1
,
RChIP + 1

RControl + 1

}

2.3.1.9 Estimating the False Discovery Rate (FDR)

The FDR is computed as a function of the enrichment score, and only in the presence of control
data. The computation involves flipping the ChIP and Control samples and redoing the entire
analysis. For a particular score x, the number of events scoring x or higher are counted in both
cases. The count in the flipped case n0, divided by the corresponding original count n gives the
q-value.

2.3.2 GADEM Algorithm

The motif-searching tool GADEM used in Avadis NGS was introduced in Section 2.2.4. This
section contains details of the algorithm including mathematical representations, dependence on
configurable parameters and a few illustrative examples. It is advisable to read the introductory
material in Section 2.2.4 before proceeding further. Further information is available in [23].

2.3.2.1 Preprocessing

Motifs are embedded in larger background sequences which are more random in nature. As motifs
are not yet known, a Background Probability Distribution is derived using the entire set of
sequences. This is used throughout in evaluating whether a sequence was part of the background
or part of the motif.
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GADEM spends a considerable amount of time in the EM procedure; this increases significantly
with the number of candidate regions to be analysed. Therefore, the EM procedure is restricted to
a random subset of the input sequences, thus limiting run-time, while still yielding most motifs
of interest. The fraction of the entire data set that is considered during the motif search can
be configured by setting the variable Fraction of Sequences to Sample under the Motif-finding
selection of the ChIP-seq Analysis Algorithms tab. This may be accessed from the Configuration
Dialog box under the Tools → Options menu. By default 50% of the data is selected; however, the
sampled fraction can lie anywhere between 50% to 100% of the entire data.

Note that the subset initially selected, remains common to all the subsequent runs.

2.3.2.2 Creation of a Population of Spaced Dyads

To create the initial population of motifs as seeds for the EM, flexible combinations of words and
spacer length are used.

1. All possible non-overlapping k-mers (short DNA words) of length k : kMIN to kMAX present
in the sampled subset are counted. For each k-mer S, an associated z-score is computed
according to

z(S) =
N(S)− E(S)

σ(S)

where
N(S) ≡ number of occurrences of the k-mer S,
E(S) ≡ expected number of occurrences of S, and
σ(S) ≡ estimate of the standard deviation of occurrences of S, based on the background
distribution estimated from the entire subset, assuming independence between positions.

2. The k-mers are rank-ordered by their z-scores; a high z-score is suggestive of participation in
motif(s). Of the remaining, only Nk top-ranked k-mers are selected, with N3 = 20, N4 = 40,
N5 = 60, and N6 = 100.

3. A spaced dyad is generated by independently creating two words and a spacer. A word is
created by first randomly selecting its length k from the set {kMIN , . . . , kMAX}. Next, a
word from the set of Nk k-mers is chosen with probability proportional to the z-score. The
width of the spacer is randomly chosen between dMIN and dMAX .

4. An indexed population of such spaced dyads is thus generated to the desired size R.

2.3.2.3 Conversion of Spaced Dyad to PWM

Having created a desired population of spaced dyads, a k-length spaced dyad is selected from the
population. As described earlier, it can be represented by a k × 4 dimensional PWM. Positions
in the PWM corresponding to the words take value 0 for absent nucleotides and 1 for present
nucleotides. The positions corresponding to the spacer all take equal values of 0.25. Thus each
column of the PWM corresponds to one position on the spaced dyad, and sums to 1.0.

Example: Consider a spaced dyad constructed with two words W1 = CCAG, a 4-mer and
W2 = GTG, a 3-mer, with a spacer of length 2 separating the two. The corresponding 9-base
string CCAGxxGTG can be represented by the PWM
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PWM =

S1 S2 S3 S4 S5 S6 S7 S8 S9
0 0 1.0 0 0.25 0.25 0 0 0

1.0 1.0 0 0 0.25 0.25 0 0 0
0 0 0 1.0 0.25 0.25 1.0 0 1.0
0 0 0 0 0.25 0.25 0 1.0 0


A
C
G
T

2.3.2.4 Expectation Maximization (EM) Algorithm

A brief description of the general EM algorithm is given in Appendix B. In the context of motif
discovery, the observed data are the DNA sequences identified by PICS, the parameters to be
estimated are the motifs represented by the PWM, and the latent data are the start positions of
the motif in the data. Note that the motif identification would be much simpler given the start
positions, and vice versa. Starting with the seed PWM, the EM algorithm alternates between
estimating the start positions of the motif in the E-step and updating the motif letter frequencies in
the PWM in the M-step, and outputs a more refined PWM after a fixed number of iterations. This
number can be set by modifying the Number of EM Steps parameter under the ChIP-seq Analysis
Algorithms tab, Motif-finding selection, from the Tools → Options menu, and takes default value
50. It is constrained to lie between 50 and 100.

E-step:
The EM algorithm considers each instance of a motif present in an input data sequence as a
k-length substring or a k-mer, where k is the length of the seed spaced dyad. The probability of
the target substring being a motif is calculated in two parts: The first calculates the probability of
the substring having been sampled from a position-specific distribution over letter, in other words
the PWM, and the second computes the probability of the remaining letters in the sequence as
being derived from a fixed background distribution. The probability so calculated is normalized by
dividing by the sum of such probabilities computed for each and every k-length substring in the
parent data sequence.

M-step:
The k-mers with their corresponding weights are combined to generate a new PWM.

Mathematical details of the EM algorithm as applied in GADEM are given in Section 2.3.2.11.

Example:
We perform one iteration to illustrate the details of the EM algorithm. Only two DNA sequences
are considered in the interests of brevity.

1 2 3 4 5 6 7 8 9 10 11
S1 = G C C A A C T A C G T
S2 = A G T G T G C C G A

The background probabilities are assumed to be given by BP =

A C G T[
0.23 0.26 0.26 0.25

]
The spaced dyad CCAGxxGTG, presented earlier in the earlier example, is used to seed the
EM algorithm to find 9-mer motifs in the 2 sequences. The PWM is altered slightly and all 0
probabilities replaced by 0.01. Thus the seed PWM is

PWM =

1 2 3 4 5 6 7 8 9
0.01 0.01 0.97 0.01 0.25 0.25 0.01 0.01 0.01
0.97 0.97 0.01 0.01 0.25 0.25 0.01 0.01 0.01
0.01 0.01 0.01 0.97 0.25 0.25 0.97 0.01 0.97
0.01 0.01 0.01 0.01 0.25 0.25 0.01 0.97 0.01


A
C
G
T

The first step lists all 9-mers present in the 2 data sequences. The weights for each of the sequences
are calculated using the PWM and the background probabilities.
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For example, the probability that the first substring GCCAACTAC from the first sequence is
sampled from the given PWM is given by

P = PWM [1][G] · PWM [2][C] · PWM [3][C] · . . . · PWM [8][A] · PWM [9][C]

= 0.97 · (0.01)6 · (0.25)2

= 6.0625× 10−13

The probability of the remainder of the first sequence S1 under the background probability
distribution is BP [G] ·BP [T ] = 0.065. Thus the probability that the motif starts from position 1
of the first sequence is given by the product of the two terms and is 3.94× 10−14. This probability
normalized by the probabilities for all substrings in the parent sequence gives the final weight.

Thus, for the substring GCCAACTAC, the weight is given by

W =
3.94× 10−14

3.94× 10−14 + 5.75× 10−8 + 6.36× 10−12

= 6.85× 10−15

where the probabilities are as shown in the table.

# Start postion
in sequence, i

1 1 in S1

2 2 in S1

3 3 in S1

4 1 in S2

5 2 in S2

Substring
1 2 3 4 5 6 7 8 9
G C C A A C T A C
C C A A C T A C G
C A A C T A C G T
A G T G T G C C G
G T G T G C C G A

Probability motif Weight
starts at position i

3.94× 10−14 7× 10−15

5.75× 10−8 0.999
6.36× 10−12 10−12

2.16× 10−11 0.999
2.3× 10−15 10−4

The weights of all 5 substrings can now be used in the M-step of the algorithm to update the
PWM. The development of the PWM is fairly intuitive, we provide the computation of the first
column as an illustration.

Looking at the nucleotides in the first column, we see that G is represented twice by substrings of
weight 7× 10−15 and 10−4. Thus the probability of the first position in the motif having nucleotide
G is proportional to the sum of the weights 7× 10−15 + 10−4. The first column is therefore given
by

PWM [1] =


0.999

0.999 + 10−12

7× 10−15 + 10−4

0


A
C
G
T

=


0.999
0.999
10−4

0


A
C
G
T

The entire PWM can be thus populated and is given by

PWM = 1 2 3 4 5 6 7 8 9
0.999 10−12 0.999 0.999 7× 10−15 10−12 0.999 7× 10−15 10−4

0.999 0.999 7× 10−15 10−12 0.999 10−4 0.999 1.998 7× 10−15

10−4 0.999 10−4 0.999 10−4 0.999 0 10−4 1.998
0 10−4 0.999 10−4 0.999 0.999 7× 10−15 0 10−12


A
C
G
T
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Normalizing the matrix gives the final PWM:

PWM =


0.499 5 · 10−13 0.499 0.499 3.5 · 10−15 5 · 10−13 0.499 3.5 · 10−15 5 · 10−5

0.499 0.499 3.5 · 10−15 5 · 10−13 0.499 5 · 10−5 0.499 0.999 3.5 · 10−15

5 · 10−5 0.499 5 · 10−5 0.499 5 · 10−5 0.499 0 5 · 10−5 0.999
0 5 · 10−5 0.499 5 · 10−5 0.499 0.499 3.5 · 10−15 0 5 · 10−13


This PWM is used in the next iteration to recalculate probabilities of the 5 substrings and the
associated weights.

2.3.2.5 Scoring Motifs: Assigning p-values

The EM-optimized PWM represents a k-length candidate motif. Associated binding sites are now
deduced by scanning each input data sequence for the occurrence of this motif. This is done by
considering each k-length substring in the sequences and computing its associated probability of
occurrence under the PWM. For a substring s1, s2, . . . , sk the probability of occurrence is given by

P [s] =

k∏
u=1

PWM [u][su].

Scores are assigned to each substring based on the absolute values of the log probabilities as follows:

Score(s) =

k∑
u=1

SM [u][su]

where elements of the Score Matrix SM [u][su], for u = 1, 2, . . . , k are simply scaled, log-transformed
versions of the optimized PWM, rounded off to the nearest integer, and are given by

SM [u][su] = integer value [200 · |logPWM [u][su]|]

The higher the probability of occurrence of a substring, the lower the score.

The significance of a subsequence with score z can be realized through its p-value, i.e., the
probability that a random string of the same length k has score at most z. A subsequence in the
data is declared a binding site, when the p-value of the observed score falls below a threshold of
0.05. Details regarding computation of p-values can be found in Section 2.3.2.12.

Note that the sequences checked for the presence of the motif are not restricted to the fractional
subset sampled for the EM procedure, but include the entire set of candidate regions presented by
the peak finding algorithm.

2.3.2.6 Fitness Evaluation

A list of corresponding binding sites is now available for each EM-optimized PWM. The goodness
of this motif depends on a various issues, such as, the number of associated binding sites, how
strongly the binding sites match the motif, how different the motif is from the background, etc.
Motifs are evaluated and a Fitness Score assigned to each, by which they may be ranked and
compared.

This is done by first aligning all binding sites corresponding to a motif and then computing a Log
Likelihood Ratio (LLR) score computed, based on the relative entropy score of the alignment:

LLR = M

k∑
l=1

∑
b={A,C,G,T}

fl,b · log

(
fl,b
pb

)
︸ ︷︷ ︸

relative entropy D(fl||p)
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where
M is the number of binding sites in the alignment,
k is the size of the PWM
fl,b is the frequency of base b at position l of the alignment and
pb is the background frequency of base b, estimated from the entire data.

Relative entropy, D, also known as the Kullback-Leibler divergence, is commonly used as a measure
of the difference between two probability distributions (in this case fl,b and pb). It is always
non-negative, and takes value 0 when the two distributions are identical. Therefore, the LLR is a
non-decreasing function of k. LLR also increases directly with M .

Example: Consider the following list of M = 10 binding sites associated with a given motif of
length k = 9 bases.

1 2 3 4 5 6 7 8 9
BS1 = G C T A A C A G T
BS2 = A G T A T G C G G
BS3 = G C C A G A T A T
BS4 = G G G G T A G G T
BS5 = G C C G C C T G C
BS6 = A C C G C G C C G
BS7 = C C T A A C G G T
BS8 = A G T G T G C G T
BS9 = C C C A G T C C G
BS10 = A C C T A G A G G

The background probabilities are given by BP =

A C G T[
0.23 0.26 0.26 0.25

]
The position-specific frequencies fl,b are calculated by counting the occurences of base b in the
lth position of the alignment. For example, for the 1st position, A and G occur 4 times each,
and C occurs twice. Thus f1,A = 0.4, f1,C = 0.2, f1,G = 0.4 and f1,T = 0. The Kullback-Leibler
divergence at the 1st position is given by

D(f1||p) =
∑

b={A,C,G,T}

fl,b · log

(
fl,b
pb

)

= 0.4 · log

(
0.4

0.23

)
+ 0.2 · log

(
0.2

0.26

)
+ 0.4 · log

(
0.4

0.26

)
+ 0

= 0.221− 0.052 + 0.172

= 0.341

Similarly calculating D(fl||p), l = 2, . . . , 9, we can compute LLR = 10 ·
∑9
l=1D(fl||p).

As with the fitness scores, the significance of an LLR score, can be assessed through its associated
p-value, i.e., the probability of observing an LLR score or higher under the (null) hypothesis that
the distribution of the letters in each column follows an independent multinomial distribution.
The p-value computation is based on the approach used by MEME; details can be found in [3].

Accordingly, each spaced dyad in the population is assigned a fitness score FS, given by

FS = log(p-value of LLR× number of data sequences)

2.3.2.7 Genetic Operations

Once the entire population of spaced dyads has been evaluated and motifs derived, a new generation
of candidate spaced dyads is evolved via two genetic operations: Mutation and Crossover. The
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motifs from the current generation are ranked according to fitness score, and the top 10% are
retained in the next generation. The remaining candidates are generated via a series of operations:

1. The operation, mutation or crossover is randomly selected.

2. Candidate(s) are selected from the entire current generation with probability specified by
the fitness score.

3. The new spaced dyad(s) are created via the genetic operation.

Mutation: A candidate spaced dyad can undergo mutation by replacing either of its first word,
number of spacers or second word. One of these are chosen at random for replacement. The
replacement is performed according to the word/spacer selection rules outlined under item 4 of
Section 2.3.2.2.

Crossover: Two spaced dyads undergo crossover by exchanging one of the three components of
the spaced dyad, i.e., the first word, number of spacers or second word, thus creating two new
candidates.

As most unique motifs remain unchanged from generation to generation, the number of GA cycles
is limited to a maximum of 5. This can be programmed through the Configuration Dialog box
accessible through the Tools → Options menu. The Number of Generations parameter under
the ChIP-seq Analysis Algorithms tab, Motif-finding selection is constrained to a maximum of 5
generations, which is also the default value.

2.3.2.8 Post-processing

At the end of all GA cycles in a run, a set of motifs with fitness scores below a certain threshold are
obtained. These motifs are checked for prevalence in the data, relevance of information content,
and redundancy before being finalised.

1. Prevalence in the data: The fraction of the data covered by the motifs is compared
against a threshold to ensure some minimum presence of the motif in the data:

M · k
N · LA

≥ φ−1

where
M = Number of binding sites associated with the motif,
k = Length of the motif in bases,
N = Total number of sequences in the input data,
LA = Average length of input sequences in bases and,
φ is a threshold parameter, which can be configured by setting the parameter Minimum
Frequency of Motif in the Data under Motif-finding in the ChIP-seq Analysis Algorithms tab,
Tools → Options menu. φ takes values between 5000 (default value) and 10000.

2. Motif trimming: A few locations within a motif may be insignificant, being fairly uniform
(or close to background probability) in distribution. Motif trimming removes such locations.

In the fitness evaluation step, motifs are evaluated for low information content through the
LLR. If a large number of locations in a PWM have low information content (e.g., a column
in the matrix with uniform probability for each base {A,C,G, T}), it will have a low LLR
and consequently an undesirably high fitness score. However, there could be PWMs with a
small number of redundant locations. The motif trimming step attempts to trim away these
locations.
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The information content at a position l is quantified by the following formula:

I(l) = 2 +
∑

b={A,C,G,T}

fl,b · log2 (fl,b)

where, f(l, b) is the frequency of occurrence of a base b at location l.

To examine whether a motif can be extended, all binding sites corresponding to a derived
motif are extended by upto a maximum of 10 bases on either side. The extended strings are
then trimmed one base at a time from both sides until any one of the following conditions is
met:

(a) I(l) ≥ 0.5 at any single position.

(b) I(l) ≥ 0.3 at any two consecutive positions.

(c) I(l) ≥ 0.2 at any three consecutive positions.

3. Motif filtering: Motifs are compared against each other for the presence of repeats, subsets,
reverse complements, etc. Details are given below.

The EM-optimized motifs at the end of all genetically altered generations may be similar to one
another. For instance, PWMs resulting from a 10-base motif with consensus ATTTGCCATT
and an 8-base motif ATGGCAAA may both be listed; the latter is simply a substring in
the reverse complement of the former. Motif filtering sieves out such overlapping motifs by
comparing PWMs using a q-sized sliding window for both the plus and reverse complementary
orientations, with value q = 6. All PWMs that are closer than a critical value are represented
only once, by the one with the highest fitness scores. Details of the algorithm are given
below.

The PWMs are first rank-ordered according the fitness scores of the parent spaced dyads.
Two motif lists are created: The first lists unique motifs, the second, candidate motifs.
The motif with the highest fitness score is added to the unique motifs list; all the remaining
form the candidate motifs list. For each candidate motif, the q-Distance is computed against
each entity in the unique motifs list, and then compared against a column distance threshold,
CD Threshold. Only if the condition q-Distance ≥ q × CD Threshold, is satisfied against
each unique motif, the candidate gets added to the unique motif list.

Computing q-Distance

(a) Column Distance between two columns of a matrix, ci, cj , is given by

CD(ci, cj) ≡
∑

b:{A,C,G,T}

|ci[b]− cj [b]|

(b) Window Distance between two PWMs, PWM1 and PWM2 of the same (window)
size q, is the sum of the pair-wise column distances

WD(PWM1, PWM2) =

q∑
i=1

CD (PWM1[i], PWM2[i])

(c) q-Oriented Distance between two PWMs, PWM1 of size n, and PWM2 of size m,
is given by

ODq(PWM1, PWM2) = min
i∈[1,...,n−q],j∈[1,...,m−q]

WD(PWM1[i, . . . , i+q−1], PWM2[j, . . . , j+q−1])

(d) q-Distance between two PWMs, PWM1 of size n, and PWM2 of size m, is given by

q-Distance = min (ODq(PWM1, PWM2), ODq(PWM1, (PWM2)c))

where (PWM)c is the complementary matrix to PWM.
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Computing CD Threshold:

(a) Randomly generate 100,000 pairs of 4-element PWM-like vectors.

(b) Compute the distance between them and keep the distances in a sorted array.

(c) Set the critical value CD Threshold at the distance representing 30% percentile of
differences i.e. by chance 30% of random columns will be at distance less than this
value.

2.3.2.9 Multiple Runs of GADEM

At the end of one run, binding sites of all output motifs are masked in the input data. More motifs
are produced by running several GADEM cycles. The algorithm stops when one of the following
conditions are satisfied:

1. No motifs can be found that satisfy the fitness criterion.

2. All motifs satisfying the fitness criterion get trimmed to size 0.

3. Binding sites corresponding to the motifs occur in less than 10% of the sequences.

4. Maximum number of runs have been reached. This can be set by modifying the Number of
runs parameter under the ChIP-seq Analysis Algorithms tab, Motif-finding selection from
the Tools → Options menu. The value is constrained to a maximum of 5 runs; the default
value is 3.

2.3.2.10 Position Weight Matrix (PWM) Computation

Consider a collection of n sequences, T = {T1, T2, . . . , Tn}, typically of varying length `(Ti), i =
1, 2, . . . , n. Let T ki (j) denote a k-length substring starting from the jth position to the (j + k− 1)th

position of the ith sequence. Let tki [j][m],m = 1, 2, . . . , k denote the mth nucleotide in the sub-
sequence T ki (j).

1. Assigning weights to substrings: For each substring T ki (j),

(a) compute P
[
T ki (j)

]
, the probability that this substring is generated from the motif. This

involves computing probabilities of

i. T ki (j) under the distribution defined by the PWM; and

ii. the remaining part of the sequence Ti, as per background probability assumptions.

(b) compute the associated weight, W
(
T ki (j)

)
, given by

W
(
T ki (j)

)
=

P
[
T ki (j)

]
`(Ti)−k+1∑

j=1

P
[
T ki (j)

] .

2. Updating the Profile Matrix: Consider all k-mers for all Ti, i = 1, 2, . . . , n. For u ∈
{1, 2, . . . , k} and b ∈ {A,C,G, T}, compute

PWM [u][b] =

n∑
i=1

`(Ti)−k+1∑
j=1

W
(
T ki (j)

)
·11
(
tki [j][u] = b

)︸ ︷︷ ︸
idenfities uth column

of the PWM,
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where 11 is the indicator function, taking value 1 when the argument is true and 0 otherwise.

Normalize the matrix, so that
∑

over all b

PWM [i][b] = 1.

2.3.2.11 Details of the EM algorithm in GADEM

GADEM an acronym for ‘‘Genetic Algorithm guided Expectation Maximization’’ algorithm for
motif disovery uses an EM algoirthm (see Appendix B). This application of the EM algorithm has
been developed by Li [22].

The EM algorithm used here uses inputs as the sequence data and the initial Position Weight
Matrix (PWM). The GADEM algorithm is described in Section 2.3.2.12 and here we only describe
the EM algorithm part of GADEM.

The assumptions made are that

1. each element of a sequence follows a multinomial (4-nomial) probability distribution;

2. the bases in various positions are independent;

3. the sequences have the same length L.

Let w be the length of the PWM. Each subsequence of length w is scored as the sum of matching
cells of standardized log-transformed PWM. With both the positive and reverse complimentary
starnds there are 2× (L− w + 1) subsequences for each sequence.

Notations:

Si, i = 1, 2, . . . , N are the sequences in the data set;
sij : nucleotide in psotion j of sequence i;

Yi.j =

{
1 if protein binding site starts at position j in sequence i
0 otherwise.

Pij = P (Yi.j = 1).
θ : w × 4 matrix of letter probabilities, with elements θ`,b, ` = 1, 2, . . . , w.
b = {A,C,G, T}.
These are the parameters of interest to be estimated.
The data that we have are only the sequences Si, i = 1, 2, . . . , N . The probability of a sequence
Si = (si.1, si.2, . . . , si.L) depends on the parameters through the site (motif) start position i.j, j =
1, 2, . . . , 2(L− w + 1) in the sequence Si. If this position is known, say j (say, Yi.j = 1) then

P (Si|Yi.j = 1) =

w∏
`=1

θ`,si.j+`−1.

It is easy to see that if we know Yi.j then the MLE of θ`,b is

θ̂`,b =
n`,b
N

,

where n`,b is the number of nucleotides b counted at position ` of the motif.

Thus the incompete-data problem is the problem of estimating θ`,b from only the observations Si,
the distribution model for Si being the mixture

P (Si) =

2(L−w+1)∑
j=1

P (Si|Yi.j = 1)P (Yi,j = 1).
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A complete-data problem suitable for this situation is the problem with data (Si, Yi.j). The complete-
data model is described by introducing the joint distribution of Yi.j , j = 1, 2, . . . , 2(L− w = 1) as
an equal probability multinomial

L−w+1∏
j=1

(
1

L− w + 1
)Yi.j .

With this the complete-data likelihood based on (Si, Yi.j) is

w∏
`=1

θ`,si.j+`−1

L−w+1∏
j=1

(
1

L− w + 1
)Yi.j

E-Step:

With this the E-Step is the calculation of

P (Yi.j = 1) = N
P (Si|Yi.j = 1,θ)

N∑
i=1

2(L−w+1)∑
k=1

P (Si|Yi.j = 1,θ)

.

Then by defining I{si,j+`−1 = b} = 1 if the (j+`−1)th nucleotide in sequence i matches nucleotide
b (b = A, C, T, G) and 0 otherwise, the expected count of base b at position ` is

c`,b =

N∑
i=1

2(L−w+1)∑
j=1

P (Yi.j = 1|Si,θ)I{si,j+`−1 = b}, ` = 1, 2, . . . , w; b = A,C,G, T.

M-Step:

The M-Step consists in computing updates

θ̂`,b =
c`,b
N
.

To avoid zeros sometimes a pseudo-count δ is added to make

θ̂`,b =
c`,b + δ

N + 4δ
.

A value like δ = 0.01 is often used.

2.3.2.12 p-values for Motif Scores

p-values are computed by first deriving the associated probability mass function, i.e., PMF. This is
the probability that a random string of a given length k has score equal to z.

Let PMF v[z] be the probability that a random string of length v(≤ k) has score z. We require
that a string of length 0, have score 0. In probabilistic terms,

PMF 0[z] =

{
1 z = 0
0 z > 0.

The PMF can be recursively computed using the relation

PMF i[z] =
∑

b∈{A,C,G,T}

BP (b) · PMF i−1[z − SM [i][b]]

For details refer to [28].
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1. Each column of the PFM matrix is considered a realization of a multinomial (4-nomial)
frequency vector.

2. The p-value of column i, i = 1, 2 . . . , w denoted by pi is computed for the hypothesis that
the column is a realization of a random multinomial vector with given probabilities for
{A,C,G, T}.

3. let p =
∏w
i=1.

4. The p-value of the PFM matrix is calculates as ([4], Theorem 1) as

p

w−1∑
i=0

(−lnp)i

i!
.

2.3.2.13 E-values for Motif Scores

At the end of the EM algorithm, a motif is represented by a PWM matrix, which can be summarized
by a quantity called the information content. A p-value is associated with this information content,
which indicates the probability that a PWM matrix randomly drawn has information equal to or
more than what is observed.

Then using the number of all possible alignments and this p-value a fitness score called E-value is
computed as follows:

1. Let N : total number of sequences.

2. Let Qi: length of the ith sequence.

3. Let n: number of words in the alignments.

4. Compute NT =

n∑
i=1

(Qi − w + 1), the total number of starting positions.

5. Compute

A(n) =
NT !

n! (NT − n)!
,

the total number of possible alignments.

6. Calculate E-value as ln(p-value×A(n)). ([15]).
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Chapter 3

RNA-Seq Analysis

3.1 Introduction

3.1.1 Gene Expression

Gene expression is the process that facilitates translation of a blueprint DNA into functional RNA
and protein molecules in a cell. The first step in this process is transcription and involves gene
activation by a set of proteins, mainly transcription factors. The resultant RNA transcript is
created from selected exonic regions of DNA within the activated gene. As shown in Fig. 3.1, an
activated gene is capable of producing more than one type of RNA transcript or isoform, based
on the combination of exons spliced together. These alternatively spliced transcripts could be
expressed in different tissues, or in the same tissue under different conditions.

Of the different species of RNA created, messenger RNA (mRNA) are particularly significant, as
they directly translate into proteins which then participate in various biological processes further
downstream. Different genes are activated in various tissue types at different times leading to
different amounts of mRNA created. As malfunctions in gene expression, or aberrant splice variants,
could lead to disruptions in the downstream biological pathways, gene and isoform expression
profiles are of tremendous interest.

3.1.2 RNA-Seq: Challenges

RNA-Seq applies next-generation sequencing technology to sequence mRNA in the sample of
interest. The mRNA sample is first converted into cDNA which then undergoes the next-generation
sequencing process.

If an mRNA transcript is abundantly present, it reflects in the corresponding quantity of cDNA
created and consequently in the number of reads that align to the parent gene. Gene expression
is inferred by counting reads at gene and exon levels using genome annotations. Differential
expression allows the comparison of expression levels across samples, under different conditions.
Isoform or transcript quantification via RNA-Seq involves estimating expression of individual
transcripts of a gene. Novel exon and gene discovery is also possible via RNA-Seq, when substantial
read representation occurs from inter-genic or exonic regions of a chromosome.

Algorithms that process RNA-Seq data must handle multiple issues; some, such as duplicate or
multiply mapping reads are inherent to next-generation sequencing, and have been discussed in
Chapter 1, while others are particular to the RNA-Seq technology.

33
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Figure 3.1: Different combinations of exons lead to alternatively spliced isoforms

� Normalization of read counts based on exon length

Chapter 1 discussed why comparison across samples requires normalization by scaling of
associated read counts. A larger number of reads map to longer exons or transcripts than
to their shorter counterparts. Thus comparison across exons within a sample also requires
normalization with respect to exon (or transcript) lengths.

A commonly used measure to represent read counts over a region of interest is Reads Per
Kilo base per Million reads (RPKM) [24], which is computed as follows:

RPKM ≡ R

L·N
· 109 (3.1)

where
R ≡ number of reads mapping to the region of interest,
N ≡ total number of reads from the sample, and
L ≡ length of the region of interest.

RPKM provides a normalized measure to allow comparison across samples for a particular
gene, exon or transcript, as well as across genes, exons and transcripts within a sample.

� Spliced reads

Spliced reads are those that straddle exon boundaries, and thus map partially to two known
exons on the reference genome. Read R1 shown in Fig. 3.2 directly maps to the reference as
it is entirely contained in an exon. The spliced read R2 on the other hand aligns partially
with two disjoint portions of the reference. These reads are particular to RNA-sequencing, as
intronic regions are entirely skipped and only exons spliced to form RNA transcripts. As
read sizes increase with improvements in technology, we expect to see more spliced reads,
especially for shorter exons.

� Fractional reads

During the read counting process, we often come across reads that do not lie entirely within
an exon. Not all of these can be explained away as known exon splices; some map partially
onto known exons, and partly onto intronic regions. These reads are useful in novel isoform
and exon discovery. Algorithms differ in their approach, as to whether such reads should
contribute wholly or fractionally to the exon read count.

� Overlapping exons
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Figure 3.2: Spliced reads

Figure 3.3: Overlapping exons on a gene
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Figure 3.4: Overlapping exons on positive and negative strands

– On the same gene, same strand

Several genes contain exons that have different start and end points but display a clear
overlap. Assigning reads that fall in the overlap to any one of the exons poses a problem.
In Fig. 3.3, exon 1 has two start points S1 and S2 and two stop points E1 and E2; thus
three exonic representations are possible.

– On a different gene on the opposite strand

The problem is a little more complex in case the overlapping genes and exons lie on
opposite strands. Currently not all next-generation sequencing technologies discriminate
between the sense and antisense strands. Therefore, reads from overlapping exons on
opposite strands, cannot be easily assigned. Note that there is no confusion in aligning
the reads to the reference genome, the difficulty is only in assigning the read to the
appropriate strand. For example, all reads shown in Fig. 3.4 can be easily assigned to
the parent gene and exon, with the exception of R7. This read may be assigned to Gene
A, Exon 1 or Gene B, Exon 1.

Of course, in case a technology can distinguish between reads emerging from positive
and negative strands, this issue poses no problem.

– On a different gene on the same strand

In a few cases, there is an overlap between genes on the same strand, which may also
result in overlapping exons. Resolution in such cases is via a probabilistic approach,
depending on the expressions of the two genes.

� 3′ bias

During the library preparation process, cDNA is created from mRNA beginning at the 3′ end
and growing towards the 5′ end. mRNAs longer than 3 kb do not always extend completely
to the 5′ end, which results in an over-representation of the 3′ end in comparison to the 5′

end of the transcript.

� Lack of poly-A tails in some mRNA

Most mRNA are characterized by polyadenylated (poly-A) tails at the 3′ end which protect
them from degradation and also play a role in transcription termination. The poly-A tails
also make it convenient for selection of mRNA during RNA sequencing. However, there are
mRNAs without poly-A tails, such as histone mRNAs which consequently remain undetected
by the RNA-seq process.
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Figure 3.5: Exon partitions

3.2 Overview of Algorithms

3.2.1 Partitioning Exons

As mentioned earlier in Section 3.1.2, exon overlaps are often observed within the same gene.
Fig. 3.5 elaborates on the three exonic representations introduced earlier in Fig. 3.3. Read R2 is
easily assigned to one isoform, but R1 and R3 each map to two. This can be handled by partitioning
the exon into non-overlapping sub-units and performing read counting for these partitioned units.
Thus, the reads R1 and R3 now map uniquely to the partitions Exon 1A and 1B, while the read
R2 now becomes a spliced read.

While doing analysis at the gene level, we consider all the transcript structures and derive the
partition set of a gene. The partition set for a gene is defined as the smallest set of disjoint regions
that cover all exons of the gene. This computation depends only on the annotation used and is
performed at the outset upon creation of the experiment.

3.2.2 Quantification

3.2.2.1 Quantification of Known Exons and Genes

Quantification is done by counting the number of reads that map to the gene and exon of interest.
This computation is done on a per sample basis. For greater speeds, the algorithm is parallelized
on different processors; each available processor runs the algorithm for one chromosome. The user
is allowed the option of discarding reads that map partially to exon partitions. The algorithm
described in this section assumes that both partial and multiple matches are present in the read
list.

In any case, the algorithm first handles reads that map uniquely to the reference genome. If there
is no ambiguity introduced by overlapping exons from different genes, it directly assigns them to
the appropriate exonic partition and updates read counts as follows:

� Read count of exon partition: The count of the partition is increased by one for each
entire read appropriated to it. Reads that map partially to an exonic partition contribute
fractionally to its read count.
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Figure 3.6: Counting unique reads unambiguously assigned to exon partitions

Figure 3.7: Counting unique reads in case of ambiguous assignment to exon partitions

� Read count for a gene: A read contributes one unit to the total read count for a gene if it
lies completely within the union of the exon partitions of the gene. This includes both reads
lying entirely within an exon partition as well as spliced reads. Reads that partially map over
intronic or intergenic regions contribute less than one unit. This approach is consistent for
all technologies using fixed-length reads. Thus, currently Avadis NGS correctly accounts
for Illumina and ABI reads of fixed length. Variable length reads, such as those created by
the 454 technology are at present treated as having a fixed length and contribute uniformly
irrespective of length.

Fig. 3.6 depicts an example: All reads in the figure are assigned by the alignment algorithms to
unique positions on the reference. Read R1 lies entirely within exon partition E1A as shown, and
so increases the count of E1A by one. Read R2 is multiply spliced; 20% of it lies within E1A, 60%
in E1B and the rest in E1C . Read R3 lies partly in E1C , the rest lies in an intronic region. Read
R4 is a spliced read connecting an intronic region with E2. Read R5 is a spliced read lying across
two exons E2 and E3. The read counts C for each partition are as shown in the figure. Even
though there are 5 reads that align to the gene the total read count for the gene is computed as
the sum of the individual partition counts and is Cg = 4.3. This is easily accounted for by the fact
that 30% of read R3 and 40% of read R4 lie in intronic regions and are therefore not included.

Based on the gene read counts computed from uniquely assigned reads, RPKMs are computed
for each gene, as defined in equation 3.1 (specifically the read count over all exonic partitions of
the gene normalized by the sum of the lengths of the partitions and total number of reads in the
sample).

The algorithm is modified for a read that lies in a region corresponding to overlapping exons on
different genes. In such a situation, even though the position of the read with respect to the
reference is certain and unique, it can be assigned to exons on either strand. Such reads are
fractionally assigned after the appropriation of all other unique reads; the assigned fraction is
proportional to the RPKM of the gene.

In Fig. 3.7 reads R1 and R2 are aligned to the reference in a way that suggests either gene α or β
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as their origin. Assume the RPKMs of genes α and β to be 4.0 and 1.0 respectively. In this case,
read counts for each of the exons partitions shown in the figure will be

Cα1A = 0.2× 0.8 = 0.16

Cα1B = 0.6× 0.8 = 0.48

Cα1C = (0.2 + 0.7)× 0.8 = 0.72

Cβ1A = 1.0× 0.2 = 0.2

Cβ1B = 1.0× 0.2 = 0.2

and adding counts over each gene we have Cα = 1.36 and Cβ = 0.4. As in the previous example
(Fig. 3.6), the total contribution to the read count is 1.76, which falls short of the 2 reads due to
the portion of read R2 that falls in the intronic region.

After all the unique reads have been assigned, both ambiguous and unambiguous, RPKMs are
recomputed for all genes. If detection of novel genes (described in next section) is chosen to be
performed, it is done at this stage and the RPKMs are recomputed for all genes. Next the algorithm
assigns multiple matches using an approach similar to that for ambiguous, unique reads, i.e., based
on their new, relative RPKM ratios. Final RPKM ratios are calculated considering all desired
reads; these are output along with the raw read counts for each gene.

Note that the algorithm does not take into account read alignment scores or individual base
qualities on the reads in the quantification. Also, mate-pairs are considered equivalent to two
individual reads, taking no notice of their paired property.

3.2.2.2 Novel Genes/Exons

The novel transcribed region detection algorithm in Avadis NGS discovers regions that are
similar in structure and in expression to the known transcribed regions present in the Gene and
Transcript Annotation files, GA, TA, that were used to create the experiment. The algorithm
is configurable by a number of parameters that can change the ratio of false positives to false
negatives. The default parameters are used in the following description of the algorithm. These
default values can be changed via Tools → Options → RNA-Seq → Novel genes and exons.
The algorithm proceeds in four phases:

Learning parameters :

� The exon, intron and gene length distributions are computed from TA. The minimum
novel exon length, le, minimum novel intron length, li, and the minimum novel gene
length, lg are set as the 10th percentile of the exon, intron, and gene length distributions
respectively. The maximum intron length, lI is set as the 90th percentile of the intron
length distribution.

� The distribution of RPKMs of all known partitions with a non-zero count is computed
and the 50th percentile of this distribution is set as the minimum RPKM threshold, mr,
for new exons. The distribution of RPKMs of all known genes with a non-zero count is
computed and the 50th percentile of this distribution is set as the minimum RPKM
threshold, mg, for new genes.

Novel partition creation : The transcript annotation, TA, is used to identify maximal regions,
R, that are do not overlap any known exon (these roughly correspond to inter-genic and
intronic regions). For each region of R, the following steps are carried out:

� the region is tiled with consecutive windows of length le,

� windows with RPKM greater than mr are merged into a novel exon if they are less
than li apart,
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� the novel exon is retained if it’s RPKM is greater than mr and it has at least 10 reads

At the end of this step, the novel exons all satisfy the minimum length, RPKM criteria and
the distance between novel exons is greater than li.

Assignment to known genes : The rules for assigning a novel partition to a gene are as follows:

� Novel partitions are allocated to known genes if they share spliced reads with those
genes.

� Novel partitions which are not allocated to any of the known genes in the above step
are allocated to known genes if they share paired reads with those genes. Paired reads
spanning across genes are ignored while assigning a partition to a known gene.

� Any novel partition remaining unallocated in the above two steps, that is within a
distance of lI from known genes is assigned to the closest such gene.

� A novel partition that gets allocated to multiple genes in the above steps is assigned
the status ‘‘Ambiguous”.

� A novel partition that gets allocated to a single known gene is assigned to that gene
(but not to any specific transcript of the gene), if the RPKM of the novel partition
is greater than a specified fraction (can be set from Tools −→Options −→RNA-Seq
−→Novel Genes and Exons, default value is 75%) of the gene’s RPKM in some sample.
Novel partitions that fail this criterion because of insufficient RPKM are marked as
such.

Creation of new genes : Remaining novel partitions that share spliced reads / paired reads, or
the ones that are within a distance of lI from each other are clustered into novel genes and
retained if their length, RPKM exceed mg,mr respectively. But in the Novel Detection report
we show the discarded novel genes also with their status showing the reason for discarding
(Small Length Gene, or Low RPKM Gene)

If the sample is directional (ABI RNA-Seq data for instance), then two passes are made - one
for each strand. In this case, the novel genes are assigned a strand. Novel genes that are created
from non-ABI data cannot be assigned a strand. Novel partitions are assigned a ‘‘Location” -- one
of Internal, Upstream, Downstream -- based on their position with respect to the gene. Novel
partitions are also assigned a ‘‘Nature” -- one of Standalone, Extension -- based on their proximity
to known exons.

3.2.2.3 Quantification of Isoforms

The object of this analysis is to use reads data to estimate the relative expression levels of various
known isoforms, using the annotations available (assumed complete and accurate). The relative
expression of an isoform is defined as the fraction of reads that are derived from it among all the
reads. Under certain reasonable assumptions, this is equivalent to the proportion of nucleotides in
the isoform.

As pointed out earlier, RNA-Seq reads do not span entire transcripts; transcripts from which
reads are derived are not uniquely determined either. Various factors contribute to read-mapping
uncertainty, such as gene and isoform multi-reads (alignments to multiple positions in reference
genome or transcriptome).

We implement the method of Li et al. [22] which is based on a probabilistic model for read
distributions with relative isoform expression levels as parameters. The maximum likelihood
method is used for estimation of these parameters. In the model formulated by Li et al., in
principle, any known distribution can be incorporated for sampling of reads (in respect of their
start positions). Moreover, in the absence of a more realistic model for sampling of reads we have
assumed uniform distribution of start positions of reads over its length.
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The model also incorporates a noise isoform, which generates reads not mapping to any known
isoform. It takes into account a user-specified model for sequencing errors. The model has two
latent variables---isoform expression and start position of the read.

The parameters in the model are θi, i = 0, 1, 2, . . . ,M the relative proportions of the M isoforms
including the noise isoform indexed by subscript 0, so that

∑M
i=0 θi = 1. The θi’s represent fractions

of nucleotides in the transcriptome made up by isoform i. It is assumed that start positions of
reads are uniformly distributed over the length `i of the ith isoform to which it is assigned; start
positions could be even `i because of the presence of poly(A) tails. Under this assumption

� as the number of reads N → ∞ the fraction of reads assigned to transcripts tends to the
fraction of nucleotides making up the isoform.

� 109 θi`i is an estimate of RPKM.

3.2.2.4 Isoform Quantification Algorithm

The N reads (sequences) are the observations (data) Rn, n = 1, 2, . . . , N , each of length L.
Associated with each read Rn is a random variable Sn which represents its start position along
the length `i of the transcript i. Sn is regarded as a latent variable which, conditional on the
isoform being i, is assumed to be uniform over {1, 2, . . . , `i} as mentioned above. In the Li et al.
model a position-specific substitution matrix for nucleotide bases (of base a in read for base b in
reference) can be used to handle base-call errors, but in our implementation we do not use it; that
is, our substitution matrix is the 4× 4 identity matrix at every position. For the noise isoform an
equal-probability distribution over {A, T,G,C} is used.

We treat paired-end reads as separate reads if they do not align perfectly and entirely within one
or more isoforms. Thus we consider only the case of perfect alignment of paired-end reads.

For each read, the Expectation-Maximization (EM) algorithm [10] is used to estimate the parameters

and the relative expressions of the M + 1 isoforms and

M∑
i=0

θi = 1.

The inputs to the algorithm are:

� reads;

� isoform annotations;

� iteration control parameters:

– maximum number of iterations (default: 1000) ; or

– convergence criterion to be satisfied by each isoform (absolute value of difference between
consecutive iteration values) (default: 0.001 );

The output consists of estimates of relative isoform expression levels (including the noise isoform)
for each sample. If isoform expression levels are required for pooled samples, data are to be
presented in terms of pooled samples.

A discussion of the EM algorithm is given in Appendix B and a description of the specific algorithm
used here is given in Section 3.3.1.

3.2.2.5 Differential Isoform Expression

If isoform quantification is carried out (for the same gene/exon) as above for several conditions
and for several samples within conditions, then differential isoform expression between conditions
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is quantiified by providing an index dm for each isoform including the noise isoform. The index is
between 0 and 1. The larger the dm are, the more is the differential expression, and the isoforms
m with large dm are responsible for the differential expression. The largest of the dm’s is output
as the splicing index for the gene/exon. Details of the algorithm used and the definition of dm are
given in Section 3.3.2.

3.2.3 Normalization of Read Counts

The expression values obtained by quantifying the association of reads to genes and exons are
called ‘raw counts’, and can be normalized using one of multiple normalization options available:
DESeq, TMM, Quantile, or Normalize Total Sample Read Count. The raw counts after applying
the normalization on them are called the ‘normalized counts’. The normalized counts are log-
transformed and baselined (if the baselining option is chosen) to result in what are called ‘normalized
signal values’.

The details of the normalization and baselining options are given in Appendix C.

3.2.4 Gene Fusion

Transcripts with regions from multiple genes can be created at various stages from transcription
to creation of proteins. A classic example is the BCR-ABL inter-chromosomal gene fusion in
Leukemia. Such transcripts stemming from the fusion of 2 genes can be identified via spliced reads
or paired reads spanning genes. The algorithm for detection of gene fusions is briefly described
below:

� Check for paired reads aligning to different genes: Mate pair reads occuring in
different genes are indicative of transcripts formed by fused genes.

� Check for spliced reads partially mapping to different genes: Spliced reads occurring
in different genes arise from reads that occur at the splice sites of the two genes.

� Discard read-pairs with incorrect configuration or orientation: Read-pairs showing
anomalous behavior are attributed to errors and discarded. Illumina paired end reads with
forward-forward or reverse-reverse orientations when both genes lie on the same strand are
an example of erroneous configuration.

Valid configurations for Illumina paired-end reads are listed in Table 3.1 and shown in
Fig. 3.8. The transcript used for illustrative purposes has representations from two genes,
Gene 1, present at the 5

′
end of the transcript, and Gene 2 at its 3

′
end. Reads 1 and 2 map

to Gene 1 and 2 respectively. A0 to A3, and B0 to B3, represent all possible valid alignments
to the reference. Cases A0 and B0 depict the simplest configuration, when both Gene 1 and
2 are on the positive or negative strand, and the reads map to the reference in the expected
order. A1 illustrates alignment when A0 undergoes an intra-chromosomal translocation. A2

and A3 depict configurations when one of the genes in A0 experiences an inversion event.
The same arguments hold for B1 to B3.

For spliced reads in the forward orientation, the first gene is the 5
′

end and the second one
is the 3

′
end of the transcript. For spliced reads in the reverse orientation, the gene that

encountered first lies at the 3
′

end.

� Deviant threshold: If the number of remaining read-pairs mapping to two specific genes
exceeds the minimum threshold defined by the user, declare a fused gene.

� Detect read through transcripts: Transcripts created by genes adjacent to each other
on the chromosome are called read through transcripts. These could arise from the same or
different strands.
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Figure 3.8: Gene fusion events: Possible alignments to a reference

Case in Gene 1 Gene 2 Possible Gene 1 (5
′
)

Fig. 3.8 Orientation Orientation Orientation Mapping
A0 + + F-R F read
A1 + + R-F F read
A2 and B2 + - F-F read aligning to + strand
A3 and B3 - + R-R read aligning to - strand
B0 - - F-R R read
B1 - - R-F R read

Table 3.1: Gene Fusion Orientations
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Inter-Chromosomal Fusions: Note that Avadis NGS is capable of identifying inter-chromosomal
fusions on account for paired reads but cannot handle splicing across chromosomes. This will be
handled in a later release.

3.2.5 Differential Gene/Exon Expression

Two types of tests are provided for differential expression.

1. Replicate Analysis: These tests are to be used when replicates are availabe for each
condtion. Both parametric and non-parametric tests are avaialble. Parametric tests assume
that the normalized signal values are normally distributed. For more details on the statistical
tests, see Section 3.3.3.

2. Pooled Analysis: We provide two tests under this category: the AC Test and the Z-test.
The AC-test pools together raw counts across replicates within each condition and tests the
differences between conditions based on the Poisson assumption on distribution of counts.
The Z-test uses the square-root transformation but uses a ’fixed’ variance as dictated by
theory rather than estimating variance from replicates. Both these tests are applicable only
to compare two conditions. Details of these tests are given in Section 3.3.4.

These tests when done for multiple entities are followed by multiple testing correction. See
Appendix D for details of the various options available in Avadis NGS for multiple testing
correction.

In addition to these tests, Avadis NGS also provides DESeq, a statistical test for differential
expression of sequence count data from the literature, as an R script. This script calls the R
package DESeq, of Simon Anders, et. al. to do differential expression analysis. The statistical
method behind DESeq is explained in [12].

3.3 Mathematical Details of the Algorithms

3.3.1 Isoform Quantification

3.3.1.1 EM algorithm

This is an implementation of the algorithm in [22] and [11] with some changes; the changes have
already been mentioned in 3.2.2.3 and 3.2.2.4. We continue to use the same descriptions and
notations given in these sections. This method is a more general version of the method used in
ERANGE. Also, a well-known model due to Jiang and Wong ([20]) is similar to a special case of
this Li et al. model. This model is similar to one used by Beissbarth et al. ([6]) for sequencing
errors in SAGE libraries.

The algorithm is an EM algorithm (see Appendix B) for maximum likelihood estimation (MLE) of
the isoform expression proportions θm,m = 0, 1, 2, . . . ,M , the subscript 0 standing for the ‘‘noise’’
isoform. We use the notation θ for (θ0, θ1, θ2, . . . , θM ). These proportions are estimated for each
sample in a condition within each gene, depending upon how the data are presented.

The latent variables (in the sense described in Appendix B) for each read Rn (with observed value
rn) are Gn the actual isoform from which the read originated and Sn the start position of the read
on the isoform. As mentioned in 3.2.2.3, another latent variable On that is used in [22] is not
invoked here; this is the strand information. We assume that every read has the same orientation
as its parent isoform.
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3.3.1.2 Incomplete-data Problem

The incomplete data that we have are N reads Rn, n = 1, 2, . . . , N independently distributed with
a probability distribution depending on the parameters θm,m = 0, 1, 2, . . . ,M and the values of
the latent variables sn, gn. The distribution of Rn then is of the form

P (Rn = rn) =
∑
sn,gn

P (Rn = rn|gn, sn)P (sn, gn|θ),

and we justifiably write P (sn, gn|θ) = P (sn|gn)P (gn|θ).

Let us denote by Znij the binary {0, 1} variable with Prob(Znij = 1) = P (Sn = j|Gn = i)P (Gn =
i) = P (Sn = j|Gn = i)θi, for i 6= 0. For i = 0, we use an equal probability distribution over
{A, T,G,C} independent of Sn.

The distribution of Sn depends on the isoform and so we need to model P (Sn|Gn). The random
variable (Sn|Gn = i) takes values in {1, 2, . . . , `i}, where `i is the length of the isoform i. We
assume this distribution to be uniform over this set. Then P (Znij = 1) = P (Sn = j|Gn = i)θi = θi

`i
.

Let ρ = (ρ1, ρ2, . . . , ρL) be a L-length sequence of bases. Then

P (Rn = ρ|Znij = 1) = 1 and P (Rn = ρ|Znij = 0) = 0 for i 6= 0.

And P (Rn = ρ|Zn0j = 1) = ( 1
4 )L and P (Rn = ρ|Zn0j = 0) = 0.

Thus the model for the distribution of a read Rn is

M∑
i=0

`i∑
j=1

θi
`i
P (Rn = ρ|Znij = 1).

This is a mixture model of the kind described in Appendix B. The data we have is incomplete-data
in this sense. The incomplete-data likelihood function is

N∏
n=1

M∑
i=0

`i∑
j=1

θi
`i
P (Rn = ρ|Znij = 1).

3.3.1.3 Complete-data Problem

The complete-data problem is one where Znij is known whereupon the MLEs of the parameters θi
are simply the sample proportions where Znij = for a given i, that is

θ̂i =

N∑
n=1

`i∑
j=1

Znij

N
.

Then we apply the standard EM algorithm for the resolution of a mixture model.

The E-step is

E
Z|rn,θ

(t)(Z
(t)
nij) =

θ
(t)
i

`i
P (rn|Znij = 1)

M∑
i′=0

`i′∑
j′=1

θ
(t)
i′

`i′
P (rn|Zni′j′ = 1)

.

The M-Step then is

θ
(t+1)
i =

E
Z|rn,θ

(t)(Z
(t)
nij)

N
.

The EM algorithm is run gene by gene with the collection of isoforms for the gene taken from the
annotations.
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3.3.1.4 Modification for Partially Aligned Reads

Let fn be the fraction of the nth read that we wish to allocate among the isoforms. Of course,
fN = 1 if it is a standard read and < 1 if it is a partial read. Then the EM algorithm is suitably
modified as follows: The E-step is

E
Z|rn,θ

(t)(Z
(t)
nij) = fn

θ
(t)
i

`i
P (rn|Znij = 1)

M∑
i′=0

`i′∑
j′=1

θ
(t)
i′

`i′
P (rn|Zni′j′ = 1)

.

The M-Step then is

θ
(t+1)
i =

E
Z|rn,θ

(t)(Z
(t)
nij)

N∑
n=1

fn

.

3.3.1.5 Some Implementation Details

Reads which are not well aligned are already filtered out before reads are analyzed by this algorithm.

Start values for the parameters are computed as follows:
An arbitrary value in (0, 1) is assigned to θ0. Then values for θi, i = 1, 2, . . . ,M are assigned in

proportion to the length `i of isoform i so that

M∑
i=0

θi = 1. Thus

θi
(1−θ0)`i

M∑
j=1

θj
(1− θ0)`j

=
1

M
,

making

θi =
`i

M∑
j=1

`j

(1− θ0).

3.3.2 Differential Isoform Expression

If isoform quantification is carried out (for the same gene/exon) as above for several conditions and
for several samples within conditions, then differential isoform expression between conditions is
quantiified as explained below. Note that for each sample (within each condition) there are M + 1
proportions adding up to 1, representing the relative expression levels of the isoforms including
the noise isoform. Let these be θijm, i = 1, 2, . . . , k, j = 1, 2, . . . , ni,m = 0, 1, 2, . . . ,M , i denoting
the condition, j (within i) denoting the sample, and m denoting the isoform (0 denoting the noise
isoform). The steps in the computation are:

1. Summarize these proportions for each condition by the average of the proportions over the
samples; that is, compute

θim =
1

ni

ni∑
j=1

θijm, i = 1, 2, . . . , k;m = 0, 1, 2, . . . ,M.
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2. Compute

θ̃m = min
i=1 to k

θim; θ̆m = max
i=1 to k

θim.

3. Compute dm = θ̆m − θ̃m.

4. Output (m, dm) by sorting dm in decreasing order.

The values dm quantify differential expression between conditions. dm take values between 0 and
1. Large values of dm evidently are indicators of differential expression and small values indicate
no differential expression. When there is differential expression, the isoform(s) responsible for
it appear at the top of the table of sorted dm. This may well include the noise isoform. These
quantities are displayed in the gene view.

3.3.3 Statistical Tests for Replicate Analysis

3.3.3.1 Unpaired t-Test for Two Groups

The standard test that is performed in such situations is the so called t-test, which measures the
following t-statistic for each gene g (see, e.g., [19]):

tg = m1−m2

sm1−m2

where sm1−m2
=
√

(n1−1)s21+(n2−1)s22
n1+n2−2 ( 1

n1
+ 1

n2
) is the unbiased pooled variance estimate.

Here, m1,m2 are the mean expression values for gene g within groups 1 and 2, respectively, s1, s2
are the corresponding standard deviations, and n1, n2 are the number of experiments in the two
groups. Qualitatively, this t-statistic has a high absolute value for a gene if the means within the
two sets of replicates are very different and if each set of replicates has small standard deviation.
Thus, the higher the t-statistic is in absolute value, the greater the confidence with which this gene
can be declared as being differentially expressed. Note that this is a more sophisticated measure
than the commonly used fold-change measure (which would just be m1 −m2 on the log-scale) in
that it looks for a large fold-change in conjunction with small variances in each group, The power
of this statistic in differentiating between true differential expression and differential expression
due to random effects increases as the numbers n1 and n2 increase.

3.3.3.2 t-Test against 0 for a Single Group

This is performed on one group using the formula

tg =
m1√
s21/n1

3.3.3.3 Paired t-Test for Two Groups

The paired t-test is done in two steps. Let a1 . . . an be the values for gene g in the first group and
b1 . . . bn be the values for gene g in the second group.

� First, the paired items in the two groups are subtracted, i.e., ai − bi is computed for all i.

� A t-test against 0 is performed on this single group of ai − bi values.
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3.3.3.4 Unpaired Unequal Variance t-Test (Welch t-test) for Two Groups

The standard t-test assumes that the variance of the two groups under comparison. Welch t-test
is applicable when the variance are significantly different. Welch’s t-test defines the statistic t by
the following formula:

tg =
m1 −m2√
s21/n1 + s22/n2

Here, m1,m2 are the mean expression values for gene g within groups 1 and 2, respectively, s1, s2
are the corresponding standard deviations, and n1, n2 are the number of experiments in the two
groups. The degrees of freedom associated with this variance estimate is approximated using the
Welch-Satterthwaite equation:

df =
s21
n1

+
s22
n2

s41
n2
1−df1

+
s42

n2
2−df2

3.3.3.5 Unpaired Mann-Whitney Test

The t-Test assumes that the gene expression values within groups 1 and 2 are independently
and randomly drawn from the source population and obey a normal distribution. If the latter
assumption may not be reasonably supposed, the preferred test is the non-parametric Mann-
Whitney test , sometimes referred to as the Wilcoxon Rank-Sum test. It only assumes that
the data within a sample are obtained from the same distribution but requires no knowledge
of that distribution. The test combines the raw data from the two samples of size n1 and n2
respectively into a single sample of size n = n1 + n2. It then sorts the data and provides ranks
based on the sorted values. Ties are resolved by giving averaged values for ranks. The data thus
ranked is returned to the original sample group 1 or 2. All further manipulations of data are now
performed on the rank values rather than the raw data values. The probability of erroneously
concluding differential expression is dictated by the distribution of Ti, the sum of ranks for group
i, i = 1, 2. This distribution can be shown to be normal mean mi = ni(

n+1
2 ) and standard deviation

σ1 = σ2 = σ, where σ is the standard deviation of the combined sample set.

3.3.3.6 Paired Mann-Whitney Test

The samples being paired, the test requires that the sample size of groups 1 and 2 be equal, i.e.,
n1 = n2. The absolute value of the difference between the paired samples is computed and then
ranked in increasing order, apportioning tied ranks when necessary. The statistic T , representing
the sum of the ranks of the absolute differences taking non-zero values obeys a normal distribution

with mean m = 1
2 (n1

(n1+1)
2 )−S0), where S0 is the sum of the ranks of the differences taking value

0, and variance given by one-fourth the sum of the squares of the ranks.

The Mann-Whitney and t-test described previously address the analysis of two groups of data; in
case of three or more groups, the following tests may be used.

3.3.3.7 Moderated t-Test

The moderated t-test is a modification of the unpaired t-test. It is tuned to handle the following
corner cases in a better way:

� Two conditions having small differences between their means and also having very low
variance within each condition which results in the unpaired t-test calling this differentially
expressed which may not be correct.
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� Two conditions having large difference between their means and also having very high
variance within each condition which might result in them not passing the unpaired t-test.

The moderated t-test attempts at estimating the variance, vglobal and a degree of freedom, dglobal
of the assumed normal distribution across genes. The details of the process can be obtained from
[7].

Following this, the moderated variance for each gene is computed by combining the variance for
that gene across the given condition and the ’global variance’ calculated. The variance across the
condition is calculated as

sm1−m2
=

√
(n1−1)s21+(n2−1)s22

df(m1−m2)
( 1
n1

+ 1
n2

)

df(m1−m2) = n1 + n2 − 2

Here, m1,m2 are the mean expression values for gene g within groups 1 and 2, respectively, s1, s2
are the corresponding standard deviations, and n1, n2 are the number of experiments in the two
groups.

The moderated variance is then calculated as follows:

smod =
sm1−m2

∗df(m1−m2)+sglobaldglobal
df(m1−m2)+dglobal

Once the moderated variance has been calculated, it is used for calculating the corresponding
T-Stat values as

tgmod = m1−m2

smod

It is to be noted that this test works with the premise of unpaired samples and equal variances
for both the groups involved. The test has not been made available against zero because the zero
condition test essentially is like a paired t-test and the literature doesn’t say much about using
moderated t-test for the paired case.

3.3.3.8 One-Way ANOVA

When comparing data across three or more groups, the obvious option of considering data one pair
at a time presents itself. The problem with this approach is that it does not allow one to draw
any conclusions about the dataset as a whole. While the probability that each individual pair
yields significant results by mere chance is small, the probability that any one pair of the entire
dataset does so is substantially larger. The One-Way ANOVA takes a comprehensive approach
in analyzing data and attempts to extend the logic of t-tests to handle three or more groups
concurrently. It uses the mean of the sum of squared deviates (SSD) as an aggregate measure of
variability between and within groups. NOTE: For a sample of n observations X1, X2, ...Xn, the
sum of squared deviates is given by

SSD =

n∑
i=1

X2
i −

(
∑n
i=1Xi)

2

n

The numerator in the t-statistic is representative of the difference in the mean between the two
groups under scrutiny, while the denominator is a measure of the random variance within each
group. For a dataset with k groups of size n1, n2, ...nk, and mean values M1,M2, ...,Mk respectively,
One-Way ANOVA employs the SSD between groups, SSDbg, as a measure of variability in group
mean values, and the SSD within groups, SSDwg as representative of the randomness of values
within groups. Here,
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SSDbg ≡
k∑
i=1

ni(Mi −M)2

and

SSDwg ≡
k∑
i=1

SSDi

with M being the average value over the entire dataset and SSDi the SSD within group i. (Of
course it follows that sum SSDbg + SSDwg is exactly the total variability of the entire data).

Again drawing a parallel to the t-test, computation of the variance is associated with the number
of degrees of freedom (df) within the sample, which as seen earlier is n− 1 in the case of an n-sized
sample. One might then reasonably suppose that SSDbg has dfbg = k − 1 degrees of freedom

and SSDwg, dfwg =

k∑
i=1

ni − 1. The mean of the squared deviates (MSD) in each case provides a

measure of the variance between and within groups respectively and is given by MSDbg =
SSDbg
dfbg

and MSDwg =
SSDwg
dfwg

.

If the null hypothesis is false, then one would expect the variability between groups to be
substantial in comparison to that within groups. Thus MSDbg may be thought of in some sense as
MSDhypothesis and MSDwg as MSDrandom. This evaluation is formalized through computation
of the

F − ratio =
MSDbg/dfbg
MSDwg/dfwg

It can be shown that the F -ratio obeys the F -distribution with degrees of freedom dfbg, dfwg; thus
p-values may be easily assigned.

The One-Way ANOVA assumes independent and random samples drawn from a normally dis-
tributed source. Additionally, it also assumes that the groups have approximately equal variances,
which can be practically enforced by requiring the ratio of the largest to the smallest group
variance to fall below a factor of 1.5. These assumptions are especially important in case of unequal
group-sizes. When group-sizes are equal, the test is amazingly robust, and holds well even when
the underlying source distribution is not normal, as long as the samples are independent and
random. In the unfortunate circumstance that the assumptions stated above do not hold and the
group sizes are perversely unequal, we turn to the Welch ANOVA for unequal variance case or
Kruskal-Wallis test when the normality assumption breaks down.

3.3.3.9 Post hoc Testing of ANOVA results

The significant ANOVA result suggests rejecting the null hypothesis H0 = ‘‘means are the same’’.
It does not tell which means are significantly different. For a given gene, if any of the group pair
is significantly different, then in ANOVA test the null hypothesis will be rejected. Post hoc tests
are multiple comparison procedures commonly used on only those genes that are significant in
ANOVA F-test. If the F-value for a factor turns out non significant, one cannot go further with
the analysis. This ’protects’ the post hoc test from being (ab)used too liberally. They are designed
to keep the experiment wise error rate to acceptable levels.

The most common post hoc test is Tukey’s Honestly Significant Difference or HSD test . Tukey’s
test calculates a new critical value that can be used to evaluate whether differences between any
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two pairs of means are significant. One simply calculates one critical value and then the difference
between all possible pairs of means. Each difference is then compared to the Tukey critical value.
If the difference is larger than the Tukey value, the comparison is significant. The formula for the
critical value is:

HSD = q
√

MSerror
n , where q is the studentized range statistic (similar to the t-critical values, but

different). MSerror is the mean square error from the overall F-test, and n is the sample size for
each group. Error df is the df used in the ANOVA test.

SNK test is a less stringent test compared to Tukey HSD. SNK = qr

√
MSerror

n Different cells

have different critical values. The r value is obtained by taking the difference in the number of
steps between cells and qr is obtained from standard table. In Tukey HSD the q value is identical
to the lowest q from the Newman-Keuls.

3.3.3.10 Unequal Variance (Welch) ANOVA

ANOVA assumes that the populations from which the data came all have the same variance,
regardless of whether or not their means are equal. Heterogeneity in variance among different
groups can be tested using Levine’s test (not available in Avadis NGS ). If the user suspect that
the variance may not be equal and the number of samples in each group is not same, then Welch
ANOVA should be done.

In Welch ANOVA, each group is weighted by the ratio of the number of samples and the variance
of that group. If the variance of a group equals zero, the weight of that group is replaced by a
large number. When all groups have zero variance and equal mean, the null hypothesis is accepted,
otherwise for unequal means the null hypothesis is rejected.

3.3.3.11 Kruskal-Wallis Test

The Kruskal-Wallis (KW) test is the non-parametric alternative to the One-Way independent
samples ANOVA, and is in fact often considered to be performing ‘‘ANOVA by rank’’. The
preliminaries for the KW test follow the Mann-Whitney procedure almost verbatim. Data from the
k groups to be analyzed are combined into a single set, sorted, ranked and then returned to the
original group. All further analysis is performed on the returned ranks rather than the raw data.
Now, departing from the Mann-Whitney algorithm, the KW test computes the mean (instead of
simply the sum) of the ranks for each group, as well as over the entire dataset. As in One-Way
ANOVA, the sum of squared deviates between groups, SSDbg, is used as a metric for the degree
to which group means differ. As before, the understanding is that the groups means will not differ
substantially in case of the null hypothesis. For a dataset with k groups of sizes n1, n2, ..., nk each,

n =

k∑
i=1

ni ranks will be accorded. Generally speaking, apportioning these n ranks amongst the k

groups is simply a problem in combinatorics. Of course SSDbg will assume a different value for
each permutation/assignment of ranks. It can be shown that the mean value for SSDbg over all

permutations is (k− 1)n(n−1)12 . Normalizing the observed SSDbg with this mean value gives us the
H-ratio, and a rigorous method for assessment of associated p-values: The distribution of the

H − ratio =
SSDbg

n(n+1)
12

may be neatly approximated by the chi-squared distribution with k − 1 degrees of freedom.
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3.3.3.12 Repeated Measures ANOVA

Two groups of data with inherent correlations may be analyzed via the paired t-Test and Mann-
Whitney. For three or more groups, the Repeated Measures ANOVA (RMA) test is used. The
RMA test is a close cousin of the basic, simple One-Way independent samples ANOVA, in that it
treads the same path, using the sum of squared deviates as a measure of variability between and
within groups. However, it also takes additional steps to effectively remove extraneous sources of
variability, that originate in pre-existing individual differences. This manifests in a third sum of
squared deviates that is computed for each individual set or row of observations. In a dataset with
k groups, each of size n,

SSDind =

n∑
i=1

k(Ai −M)
2

where M is the sample mean, averaged over the entire dataset and Ai is the mean of the kvalues
taken by individual/row i. The computation of SSDind is similar to that of SSDbg, except that
values are averaged over individuals or rows rather than groups. The SSDind thus reflects the
difference in mean per individual from the collective mean, and has dfind = n − 1 degrees of
freedom. This component is removed from the variability seen within groups, leaving behind
fluctuations due to ”true” random variance. The F -ratio, is still defined as

MSDhypothesis
MSDrandom

, but

while MSDhypothesis = MSDbg =
SSDbg
dfbg

as in the garden-variety ANOVA.

MSDrandom =
SSDwg − SSDind

dfwg − dfind

Computation of p-values follows as before, from the F -distribution, with degrees of freedom
dfbg, dfwg − dfind.

3.3.3.13 Repeated Measures Friedman Test

As has been mentioned before, ANOVA is a robust technique and may be used under fairly general
conditions, provided that the groups being assessed are of the same size. The non-parametric
Kruskal Wallis test is used to analyst independent data when group-sizes are unequal. In case
of correlated data however, group-sizes are necessarily equal. What then is the relevance of the
Friedman test and when is it applicable? The Friedman test may be employed when the data is
collection of ranks or ratings, or alternately, when it is measured on a non-linear scale.

To begin with, data is sorted and ranked for each individual or row unlike in the Mann
Whitney and Kruskal Wallis tests, where the entire dataset is bundled, sorted and then ranked.
The remaining steps for the most part, mirror those in the Kruskal Wallis procedure. The sum
of squared deviates between groups is calculated and converted into a measure quite like the H
measure; the difference however, lies in the details of this operation. The numerator continues to

be SSDbg, but the denominator changes to k(k+1)
12 , reflecting ranks accorded to each individual or

row.

3.3.3.14 N-way ANOVA

The N-Way ANOVA is used to determine the effect due to N parameters concurrently. It assesses
the individual influence of each parameter, as well as their net interactive effect.

Avadis NGS uses type-III sum of square (SS) in N-way ANOVA [16, 17]. This is equivalent to
the method of weighted squares of means or complete least square method of Overall and Spiegel



3.3. MATHEMATICAL DETAILS OF THE ALGORITHMS 53

[18]. The type-III ss is defined as follows :
Let A and B be the factors, each having several levels. The complete effects model for these two
factors is
yijk = µ+ ai + bj + tij + eijk,
where yijk is the k-th observation in ij-th treatment group, µ is the grand mean, ai(bj) is additive
combination and tij is the interaction term and eijk is the error term, which takes into account of
the variation in y that cannot be accounted for by the other four terms on the right hand side of
the equation. The difference in residual sum of square (RSS) of the models
yijk = µ+ ai + tij + eijk,
and
yijk = µ+ ai + bj + tij + eijk, is the SS corresponding to factor B. Similarly, for other factors we
take the difference of RSS of the model excluding that factor and the full model.

Avadis NGS ANOVA can handle both balanced and unbalanced design, though only full factorial
design is allowed. For more than three factors, terms only up to 3-way interaction is calculated,
due to computational complexity. Moreover, Avadis NGS calculates maximum 1000 levels, i.e.,
if the total number of levels for 3-way interaction model is more than 1000 (main + doublet +
triplet), then Avadis NGS calculates only up to 2-way interactions. Still if the number of levels
is more than 1000 Avadis NGS calculates only the main effects.

Full factorial designs with no replicate excludes the highest level interaction (with previous
constraints) to avoid over fitting.

Missing values are handled in Avadis NGS ANOVA. If for a condition, if more than one sample
has values, then ANOVA handles them. But, if all the samples have missing values, then those
values (entities) are excluded for p-value computation and a separate list titled ‘Excluded Entities’
is output at the end. See Fig. 3.9.
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Figure 3.9: Anova result showing ‘Excluded Entities’ because of missing values

3.3.4 Statistical Tests for Pooled Samples

3.3.4.1 Z-Test

Reads are normalized by the total number of mapped reads before they are put through this
test. If there are several samples under a condition, they are pooled. Assuming read counts to be
distributed as Poisson, they are subjected to a square root transformation in an effort to make them
nearly normally distributed with a constant ( 1

4 ) variance. Then a hypothesis test of differential
expression is carried by a Z-test (normal distribution test) for two conditions with known variance.

This test is based on transformed Poisson variables to normality. It is well known that if
X ∼ Poisson(λ) then

√
X has an approximate normal distribution with mean

√
λ and constant

variance of 1
4 .
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Algorithm:

1. Let G1 and G2 be the two experimental groups.

2. Let q1 and q2 be the number of samples from G1 and G2 respectively.

3. Let {x11, x12, . . . , x1q1} and {x21, x22, . . . , x2q2} be the read counts from groups G1 and G2

respectively. Each observation is associated with a total mapped read count, so we have read
counts {N11, N12, . . . , N1q1

, N21, N22, . . . , N2q2
}.

4. Let x1 =

q1∑
i=1

x1i, x2 =

q2∑
i=1

x2i, N1 =

q1∑
i=1

N1i and N2 =

q1∑
i=1

N2i.

5. The test statistic is given by, Z =

√
x1
N1
−
√

x2
N2√

1
4N1

+ 1
4N2

, which has a standard normal distribution

under the hypothesis of no differential expression.

6. p-value is calculated as follows.

If Z < 0, p = 2 ∗ Φ(Z)
else p = 2 ∗ (1− Φ(Z)).

where Φ(Z) is the Standard Normal CDF and Z is the test statistic computed in the previous
step.

3.3.4.2 AC-Test (Audic-Claverie Test)

Originally formulated as a method of finding differentially expressed genes in a SAGE framework,
this technique examines if tag counts or read counts in two libraries or groups or conditions have
the same mean under the assumption that the counts or reads have a Poisson distribution ([2]; [31]).
We use this method for testing differential expression between two conditions by consolidating
observations under each condition into a single number. The test is based on the conditional
distribution of one of the counts given the other as a negative binomial distribution; this derivation
is done in a Bayesian framework. Depending on how small or large the observations are, we compute
exact negative binomial probabilities, or approximate them numerically using the incomplete beta
integral, or approximate them statistically using an asymptotic normal distribution of with the
same mean and variance as the negative binomial variable.

The original Audic-Claverie test is a one-sided test. We give both one-sided and two-sided p-values.

Algorithm:

1. Let A and B be the two groups with more than one observation. Group A has observations
(read counts) {xA1, xA2, . . . , xAp} and B has observations (read counts) {xB1, xB2, . . . , xBq}
and we assume that these are all identically distributed under each condition. Each observa-
tion is associated with a total mapped read count;

{NA1, NA2, . . . , NAp;NB1, NB2, . . . , NBq}

are the mapped read counts corresponding to the observations.

2. Let xA =

p∑
i=1

xAi, xB =

q∑
j=1

xBj .
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3. Let NA =

p∑
i=1

NAi and NB =

q∑
j=1

NBj . NA and NB may not be the same.

4. Experiment A could be run first, followed by B. Then the probability of observing a read
count xB in the region of interest in the second run, given that xA was already observed
in the first run, has been shown by Audic-Claverie under their model to be the negative
binomial probability

p(xB |xA) = (NBNA )xB (xA+xB)!

(xA)!(xB)!(1+
NB
NA

)xA+xB+1

5. For large values of xA, xB , it is hard to compute this exactly since it involves factorials. So
we use the incomplete beta integral approximation of the negative binomial for moderate
values of xA, xB and transformed normal approximation for large values of xA, xB as follows:

6. Using Incomplete Beta approximation to negative binomial, we calculate probability as
follows:

(a) Compute p1 = Ibeta(xA + 1, xB + 1, p), where xA, xB are given read counts, p1 is the
probability, and Ibeta is the incomplete beta function, which can be computed using
NA and NB .

(b) Compute p2 = 1− p1.

7. For large values, the negative binomial is approximated by a normal distribution with the
same mean and variance as the negative binomial.

8. One-sided p-value is computed as,

p-value = min{p1, p2}.

9. Two-sided p-value is twice the above p-value.



Chapter 4

Small Variant (SNP/MNP)
Analysis

4.1 Introduction

Most organisms within a particular species differ very little in their genomic structure. A single
nucleotide variation between two complementary DNA sequences corresponding to a specific locus
is referred to as a SNP or Single Nucleotide Polymorphism and is the most common variation
observed within a species. This variation could be due to insertion, deletion or substitution of a
nucleotide. The variations are referred to as allele changes at the specific chromosomal co-ordinates.
Typically, SNPs commonly observed in a population exhibit two alleles---a major allele, which is
more prevalent, and a relatively rarely occurring minor allele. Such variations, if they occur in
genic regions, can result in changed phenotypes and may even cause disease.

Sometimes, SNPs occur together. A set of adjacent SNPs is termed a Multiple Nucleotide
Polymorphism or MNP. Thus MNP alleles have multiple nucleotides.

Microarrays for SNP detection use probes with specific targets while searching for SNPs. Next-
generation sequencing (NGS) allows SNP identification without prior target information. The high
coverage possible in NGS also facilitates discovery of rare alleles within population studies.

SNP detection algorithms compare the nucleotides present on aligned reads against the reference, at
each position. Based on the distribution of As, Ts, Gs, and Cs at that position, and the likelihood
of error, a judgement is made as to the existence of a SNP.

Some issues that must be handled by SNP detection algorithms are mentioned below:

� Quality of base-calls

A sequencer outputs a sequence of nucleotides corresponding to each read. It also assigns a
quality value based on the confidence with which a particular base is called. Clearly, SNP
detection algorithms must put greater weight on bases called with higher confidence.

� Mapping quality of reads

Most alignment algorithms assign quality scores to a read based on how well the read aligned
with the reference. These scores are relevant in SNP detection because they measure the
likelihood of a read originating from the suggested position on the reference. Even if the
individual bases on a read are called with high quality values, the read may align imperfectly
with the reference. The mapping quality score takes into account the inserts, deletes, and
substitutions necessary for alignment at a particular position.

57
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Figure 4.1: Homozygous SNP

� Depth of coverage

The number of reads ‘‘covering’’ a position also determine how confidently a SNP can be
called. Obviously greater sequencing depths lead to higher SNP calling accuracy.

� Homopolymer

A homopolymer is a repetitive sequence of a single nucleotide, e.g., AAAAAA. Sequencers
often exhibit inaccurate representations of homopolymers and their immediate neighbors due
to limitations in the next-generation sequencing technology. Such regions need to be handled
carefully by SNP detection algorithms.

� Ploidy

Ploidy is the number of sets of chromosomes in a cell. Haploid organisms have one set of
chromosomes per cell, while diploid organisms like humans have two. Polyploidy, the state
where all cells have multiple (but more than two) sets of chromosomes is chiefly observed in
plants. SNP detection must take into account the ploidy while calling SNPs. For example,
in a sample of a haploid individual organism, each position can correspond to only one
nucleotide. Reads must ideally agree at each position, and any deviation is easily detected as
a sequencing error. Diploid organisms inherit one set of chromosomes from each parent and
so reads can show two nucleotides at each position, one from each set.

Currently, SNP analysis in Avadis NGS assumes that the ploidy is two. In this case a SNP
can be called under two circumstances:

1. Homozygous SNP

One when the consensus reached from the sample reads shows a single nucleotide at
the location and this consensus differs from the reference nucleotide. In Fig. 4.1, the
highlighted position shows a T in the reference genome but a consensus nucleotide of
C among the reads. The nucleotide G in one of the reads is attributed to sequencing
error.

2. Heterozygous SNP

Alternatively, the sample reads may show considerable presence of two different nu-
cleotides; typically one of the two agrees with the reference nucleotide. The two alleles
should ideally show close to 50% presence each. In Fig. 4.2, the reference genome shows
a T at the locus of interest, whereas the reads show a combination of T and C bases.

In the following we describe the two main steps in the SNP analysis: i) SNP Detection, and ii) SNP
Effect Analysis. SNP Detection identifies the SNPs by comparing the given sample’s genome with
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Figure 4.2: Heterozygous SNP

the reference genome. SNP Effect Analysis takes the list of SNPs detected in the first step and
generates a report indicating the effect that these SNPs have on the genes in a given annotation.

4.2 Local Realignment

4.2.1 Background and Motivation

Since alignment algorithms map each read independently to the reference genome, it may result in
some alignment artefacts. This means that SNPs or indels can be improperly placed with respect
to their true location. This could be because of 1) sequencing errors, 2) several equally likely
positions of the variant, and 3) adjacent variants or near by errors [37]. In particular, insertions
and deletions especially towards the ends of the reads are difficult to anchor and resolve without
the use of multiple reads.

These misalignments can lead to false positive SNP calls as well as skewed recalibrated base quality
scores and there by have critical impact on the downstream results. Therefore the most important
objective behind realigning reads around indels is to reduce the number of false positive variant
calls.

Consider for example the case shown in Fig. 4.3, which demonstrates the issues of alignment
artefacts. If we shift the 6 reads having C,T as mismatch bases to the left by having C as insertion,
then the T bases cease to be mismatches and the inserted sequence matches other reads which
already had an insertion at that locus.

As another example, consider the case shown in Fig. 4.4. In the reads that show mismatches, if we
shift TG to the right to allow for 3 deletions, there will be no mismatches and the percentage of
supporting reads for deletion would be increased.

4.2.2 Local Realignment Approach

Some of the popular approaches for local realignment include GATK [39], Dindel [35] and SRMA
[37]. In fact both GATK and Dindel, barring few differences use same method conceptually and
we have adopted ideas from both of these approaches in Avadis NGS. SRMA on the other hand,
follows a different approach, which uses short read alignment coupled with assembly inspired
approach and builds a variant graph for each region from the initial alignments. Once the variant
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Figure 4.3: Example showing alignment artefacts in a potential genomic region for local realignment.

Figure 4.4: Example showing alignment artefacts in a potential genomic region for local realignment.
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graph is built, all reads are realigned according to the variant graph. We will not discuss the
SRMA approach here as we have mostly adopted the ideas from GATK and Dindel.

Below are the four basic steps that are used in our implementation:

� Identify regions of reads to be realigned

� Generate candidate haplotypes in each identified region

� Infer most likely haplotypes

� Realign reads to most likely haplotypes

In the following we will discuss each of the above four steps in more detail:

4.2.2.1 Identification of candidate regions for local realignment

The genome is first divided into windows of non-overlapping reads and then each window is
considered separately to identify candidate regions for local realignment. In each window, we look
at all the indels and evaluate local region around each one of them. Specifically, we check the
following three things for each indel:

� Minimum indel coverage: Unlike the approach adopted by GATK, which considers all indels
that are supported by at least one read, we require every indel to be supported by at least 5
reads. Indels that do not satisfy this criteria are discarded.

� Mismatches in neighbourhood of indel: For every indel that satisfies the ‘minimum coverage’,
we check if it has at least one mismatch in its neighbourhood (+/−20bp).

� Possibility of merging near-by indels: Indels that satisfy the ‘minimum coverage’ requirement
and have mismatches in it’s neighbourhood, are further evaluated to assess the possibility
of merging them into a single candidate region. If two indels are within a fixed distance lm
(called indel merging window width) apart, they will be considered in a single common region
for realignment.

To output the final candidate regions for local realignment, we use a parameter called ‘Indel effect
boundary’ window of length le, and determine left effect boundary and right effect boundary for
each region (a region may comprise either single indel or multiple closeby indels) identified in the
previous step. In the case of single indel region, length of the candidate region for local realignment
is equal to le, with indel occurring in the middle of the effect boundary window. In the case of
merged indel region, left effect boundary is governed by the leftmost indel (basically a distance of
le/2 from the left indel) and right effect boundary is governed by the rightmost indel (a distance
of le/2 from the right indel).

To further illustrate all the steps involved in the identification of candidate regions for local
realignment, let us consider an example as shown in Fig. 4.5.

This figure shows 5 indels (indicated by red color) in the region. First, for each indel we check 1)
minimum indel coverage; 2) mismatches in the local neighborhood; and 3) possibility of merging
indels. Only those indels are chosen that satisfy both the criteria 1) and 2). Out of the five indels
considered, 4th indel does not satisfy the min coverage criteria, and hence discarded, 5th indel had
no mismatches in the local neighborhood, and hence discarded too. Of the remaining three indels,
we can check the merging criteria. As shown in the figure, based on the window size used, first
two indels can be merged together, while third one is by itself. Finally to obtain the candidate
regions, for each region (whether merged or single), left and right effect boundaries are determined
using the ‘effect boundary’ window as shown in the figure.
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Figure 4.5: Identification of candidate regions for local realignment.

Figure 4.6: Candidate Haplotype Generation (Figure taken from Albers et. al., Genome Research
2010).

4.2.2.2 Generation of candidate haplotypes

Once we have the candidate regions for local realignment as identified in the previous step, we
generate candidate haplotypes in each of the candidate regions. The steps are depicted in Fig. 4.6.
First a partition set is created using information from start and end positions of all the reads that
are aligned to this region. Then in each partition or sub-block, we count all possible haplotypes
and record their frequency (this step is similar to Dindel approach [35]). This is repeated for
all partitions and then eventually n block haplotypes with the highest empirical frequency are
obtained. Using these n block haplotypes, we have at most 2n candidate haplotypes. In addition,
we allow known variants to be provided from outside and consider at most k variants per candidate
region. In that case also, we consider all possible combinations and hence we have at most 2k ∗ 2n

candidate haplotypes that should be evaluated using the read data.
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4.2.2.3 Inferring most likely haplotypes

Once we have obtained the candidate haplotypes, they are evaluated using all the reads. To do
this, each read is aligned to each haplotype in a gapless manner and a score is calculated as shown
in Eqn. 4.1. Assume Rj is the jth read, Hi is the ith haplotype, we define score, L as the following:

L(Rj |Hi) =
∏
k

L(Rj,k|Hi,k+sji) (4.1)

L(Rj,k|Hi,k+sji) =

{
1− εj,k, Rj,k = Hi,k+sji

εj,k, Rj,k 6= Hi,k+sji

(4.2)

Here, Rj,k is the kth base of read Rj , εj,k is the error rate corresponding to the declared quality
score for that base, and sji is the offset in the gapless alignment of Rj to Hi.

The L-scores are combined across all the reads to get the score for each haplotype as shown in
Eqn. 4.3. This is similar to the approach followed in GATK. However, GATK chooses only
one alternate haplotype that yields the maximum score. In our approach, we evaluate all the
haplotypes including the reference haplotype but choose the best two based on their scores. These
selected two may or may not have the reference haplotype.

L(Hi) =
∏
j

L(Rj |Hi) (4.3)

4.2.2.4 Realigning reads using most likely haplotypes

Finally to realign the reads, we select the two best haplotypes Hi1 , and Hi2 (as mentioned earlier,
unlike GATK, this may or may not include the reference haplotype) based on their scores. However
reads are aligned to the two haplotype model instead of a single reference haplotype model only if
the log odds ratio of the two-haplotype model is better than single haplotype model by at least 5
units, as shown in Eqn. 4.4

L(Hi1 , Hi2)

L(Ho)
=

∏
jmax(L(Rj |Hi1), L(Rj |Hi2))∏

j L(Rj |Ho)
(4.4)

4.3 Base Quality Recalibration

4.3.1 Background and Motivation

Base quality score is the confidence of the sequencer in calling a base. In other words, base quality
reflects the probability of a sequencer making an error and calling incorrect base. Typically, base
quality score is reported on a Phred scale as defined below:

Base Quality Score = −10 ∗ log10(p) (4.5)

For example, a base quality score of 20 on a Phred scale means an error probability of 1 in 100,
a score of 30 would mean an error probability of 1 in 1000, and so on. These sequencing errors
may either result due to random sequencer noise or systematic biases. The systematic biases could
be machine-, run-, or sample-specific. Bayesian variant caller, like the one used in Avadis NGS,
uses the base qualities in calling out variants. Therefore inaccurate or biased base qualities may
result in spurious variant calls. If base qualities are over-estimated (under-estimated), it may
result in false positive (false negative) variant calls. This problem may not be severe in case of
high coverage samples however for low coverage samples, recalibrating the base quality scores may
help reduce spurious variant calls.
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4.3.2 Types of Approaches

There are two types of approaches for base quality score recalibration.

� Data driven empirical approach: This is presented in the paper by DePristo et. al. [39]
and implemented in the software suite GATK. In this approach, a recalibration table is
built which can then be used to recalibrate base quality scores. To populate the table, this
approach uses all the data. In fact, if multiple samples are available, it is recommended to
pool the data.

� Machine learning based logistic regression approach: This is presented in the paper by
Cabanski et. al. [38] and implemented in a R package called ‘‘ReQON’’. In this approach,
a logistic regression model is learned and used to recalibrate the quality scores. For model
training, ‘ReQON’ can train on a smaller set of data. In fact, for large training data, logistic
regression model can be built on separate data chunks and then median regression coefficients
can be used.

Based on the above, it is apparent that ReQON model has relatively solid theoretical underpinnings
and can be used with smaller training data. However, the ease of implementation, usability and
popularity of GATK’s empirical approach, motivated us to adopt the empirical model in Avadis
NGS for base quality score recalibration. Below we describe the empirical approach in more detail.

4.3.3 Empirical Approach for Base Quality Score Recalibration

Empirical method for base quality score recalibration as proposed in [39] identified the following
four covariates on which base quality score depends upon.

� Machine Cycle: Based on the sequencer, machine cycle can either be represented as flow
cycle (for e.g. 454 and Ion Torrent) or discrete cycle (for e.g. Illumina and PacBio). In flow
cycle, each flow grabs all the TACG’s in order in a single cycle. So consider for e.g. the
sequence AAACCCCGAAATTTTTACTC, flow cycle would be 1 for the A’s, C’s and G’s
since they are in order of TACG. Next set of A’s would be one cycle by itself. The subsequent
T’s, A, and C would be captured in the 3rd cycle, followed by TC being captured in the 4th
cycle. In discrete cycle, machine cycle is simply the position in the read, which should be
counted in the reverse direction for a negative strand read.

� Nucleotide Context: Another covariate of interest is nucleotide context, which looks into
the sequence chemistry effects. The fundamental question here is what is the likelihood of
mis-calling a base A, if it is preceded by A or T or G or C? In other words, is the error
probability independent of the preceding base(s) or dependent upon it?. It turns out that
preceding base makes a difference in the sequencing error of the called base. Although this
effect can be studied for one or more preceding bases, we only consider di-nucleotide context
i.e. the effect of one preceding base on the likelihood of the sequencing error of the called
base. However, for homopolymer stretches, we use longer context, up to 8 bases. So we have
a total of 40 combinations (16 for dinucleotides and 24 for homopolymer stretches).

� Read Group: Another covariate that can affect the base quality scores is read group. Sample
ID is typically taken as the read group. For illumina, which has a lane concept, (sample ID
+ lane ID) can be used as read group.

� Original Base Quality: Finally reported original base quality is used as another covariate
since the recalibrated base quality score, in addition to being dependent upon other covariates
as discussed above, would of course depend upon this as well.
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In Avadis NGS , by default the three covariates, namely machine cycle, nucleotide context, and
the original base quality are used. Once the covariates are identified the empirical base quality
score recalibration method involves two steps:

� Empirical model training (i.e. Generating recalibration table): In order to generate the
recalibration table using the data, the basic assumption is to consider all mismatches as
sequencing errors, except the mismatches at the locations that are known to vary, for e.g.
in dbSNP. This is done to avoid true variations being considered as sequencing errors. For
the remaining locations, we look at every base and categorise it in one of the bins according
to the covariates described above i.e. original reported base quality, machine cycle, and
nucleotide context. So, for three covariates, if we try to visualise these bins, it will result in
a cube where each cell of the cube represent one bin, and with each bin consisting of several
data points (base locations in this case). Finally to generate and populate the recalibration
table, using these data points, for each cell we compute the number of mismatching bases
and total number of bases. One can now easily appreciate why the availability of more data
is useful for generating more accurate recalibration table.

mismatches(R,C,D) =
∑
r∈R

∑
c∈C

∑
d∈D

br,c,d 6= bref (4.6)

bases(R,C,D) =
∑
r∈R

∑
c∈C

∑
d∈D

|br,c,d| (4.7)

Here capital letters R, C, and D denote the set of all reported base quality scores, machine
cycle, and nucleotide context respectively. On the other hand, small letters r, c, and d denote
specific instances or values of reported base quality scores, machine cycle, and nucleotide
context respectively. b is used to denote the base call, and ref is used to denote the reference
base.

Once we have determined the number of mismatches and total bases in each cell, we can
compute the empirical base quality scores, which is nothing but the ratio of mismatches and
total bases, but corrected using Yates correction. Yates correction is done to avoid divide by
0 cases. So, we start with two bases in each bin and assume that one was a mismatch and
other was not, therefore 1 would be added to the mismatch count and 2 would be added to
the count of total bases.

Qempirical(R,C,D) =
mismatches(R,C,D) + 1

bases(R,C,D) + 2
(4.8)

� Recalibrate base quality scores using the generated recalibration table: After generating
a recalibration table as explained above, quality score of each base in every read can be
recalibrated using the equation below:

(4.9)
recal(r, c, d) = (Qe(r, C,D)) +

(Qe(r, c,D)−Qe(r, C,D)) +

(Qe(r, C, d)−Qe(r, C,D))

Here recal(r, c, d) denotes the recalibrated base quality score given a specific value of original
reported quality r, machine cycle c, and nucleotide context d. The right hand side terms are
empirical qualities that were obtained in the first step as shown in Eqn. 4.8. These terms are
nothing but the projections of the cube in 2 or 1-dimensional space. Capital letters indicate
summation or marginalization and small letters indicate specific values of the variable.

It is also interesting to note from this equation, especially the way it is represented that it is
fairly easy to incorporate additional covariates.
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4.4 SNP Detection

The SNP detection algorithm in Avadis NGS is capable of detecting three types of variants,
namely substitution (or mutation), deletion and insertion. While reporting, these variants are
categorized into four events namely substitution, insertion, deletion and complex. Substitution
consists of one or more substitutions occurring in consecutive locations; similarly deletions and
insertions comprise of events where one or more deletions or insertions, as the case may be, occur
together. A deletion event is modeled as a mutation from a nucleotide value {A, T, G, C} to
‘‘gap”. Complex events are reported when there is a mixture of multiple types of variants occurring
together in consecutive locations.

The SNP detection algorithm works on a per-sample basis. For each sample, data for each chromo-
some is analyzed, with a capability for parallel computation per chromosome. The computation is
optimized for memory usage by segregating the data into windows based on maximum read size.

4.4.1 Pre-processing: Selection of Potential SNP Sites

SNP identification is only performed at sites determined by pre-processing to be likely SNP locations.
Locations are only considered potential SNP sites if they satisfy all the following requirements:

� Read coverage threshold: The number of reads covering the location must exceed a
user-defined threshold.

� Variant coverage threshold: The number of reads covering the location and differing
from the reference at the location, must also exceed a user-defined threshold.

� Homopolymer effects: In some technologies, reads covering homopolymers and adjacent
nucleotides are more prone to errors in sequencing and alignment.

– Homopolymer threshold: Homopolymers are determined by sequences repeating
a single nucleotide value more than a threshold number of times; this is set by the
user-defined homopolymer threshold. Currently, SNPs are not called at locations within
a homopolymer stretch. In Fig. 4.7, the column shaded in pink lies at the end of a
homopolymer of length 7 bases. At this position, both the Read Coverage (11) and
Variant coverage (3 Ts and 2 gaps = 5 variants) satisfy the related default thresholds
of 10 and 2 respectively. However, as the position lies within a homopolymer it will not
be considered for SNP calls.

– Spillover threshold: If the length of the homopolymer exceeds a certain user-defined
spillover threshold, bases at locations immediately adjacent to the homopolymer and
which are same as that present in the homopolymer are discarded. The examples given
in Figures 4.7 and 4.8 illustrate this point. The column shaded blue in each case is
adjacent to a homopolymer of length 7. This position is not within a homopolymer,
and has sufficient read coverage as well. However, in Fig. 4.7, the variant coverage is
only 1, contributed by the gap. The two reads with nucleotide G do not contribute to
the variant count, as they are considered due to the spill-over effect of the adjacent
homopolymer with 7 consecutive Gs. On the other hand, in Fig. 4.8, the variant coverage
is 5, caused by 1 gap and 4 Cs.

4.4.2 Bayesian SNP Calling Algorithm

At every location declared significant in the pre-processing step, the Bayesian SNP calling algorithm
is applied to identify the genotype at that location, and report the SNP if detected. The algorithm
considers the nucleotide or the base taken by each read covering the location, as well as its
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Figure 4.7: SNP calling close to a homopolymer

Figure 4.8: Heterozygous SNP adjacent to a homopolymer
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associated base quality and finds the consensus genotype. The consensus genotype is the one most
likely to have caused the observed data and is computed using Bayes principle.

If the observed data is collectively denoted by D, then the task is to infer the consensus genotype
from D. SNPs are then detected by comparison to the reference sequence. The ploidy of the
sample determines the number of nucleotide inferences necessary to infer the underlying genotype
Ĝ. As Avadis NGS currently only handles diploid organisms, the number of nucleotides to be
concluded (the length of vector Ĝ) is two.

The algorithm selects the genotype Ĝ that maximizes the posterior probability, P (G|D), defined by
the probability of a genotype G given the observed data. In other words, the genotype concluded
is that most likely to have caused the particular observations

Ĝ = argmaxGP (G|D).

This is easily computed under Bayes principle as

P (G|D) =
P (D|G) · P(G)

P (D)

where P (G) is the prior probability of genotype G and P (D) is the likelihood of data, calculated
over all possible genotypes,

P (D) =
∑
∀Gi

P (D|Gi) · P (Gi).

The conditional probability P (D|G) represents the probability of observing the data D under the
given genotype G. (See below for the details of the calculation of the prior and the conditional
probabilities.)

Combining the above-mentioned equations, we arrive at the consensus genotype, given by

Ĝ = argmaxG
P (D|G) · P(G)∑
∀Gi P (D|Gi) · P (Gi)

Avadis NGS specifies a score to represent the confidence with which a SNP is called at a locus.
This score is a function of the posterior probability of the locus being the reference genotype RR
given the observed data and is defined as

Score = −10log10(P (G = RR|D)).

If the consensus genotype is not the reference genotype, and if the above score is greater than the
user-specified cut-off, then the location is reported as a variant location and the alleles corresponding
to the consensus genotype which are different from the reference are reported as the variant alleles.

Calculation of the prior probabilities P (G):
We calculate the prior probabilities of different genotypes at a given location by taking into account
the following parameters. The approach is similar to that in [40].

� The reference base at the location

� Heterozygosity: This is representative of the prior expectation of a position being heterozygous
in the organism. The default value is set to 0.001 which correlates with the population SNP
rate for the human genome.

� Homozygous to heterozygous ratio: This is the prior expectation of the ratio of the number
of homozygous mutations to the number of heterozygous mutations. It has been observed
that heterozygous variants are twice as frequent as homozygous variants in any genome.
Hence the default value is set to 0.5.
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� Indel to substitution ratio: This is the prior expectation of the ratio of the number of indels
to the number of substitutions. Based on the information from the literature, the default
value is set to 0.125.

� Ti/Tv ratio: This is the prior expectation of the ratio of the number of transitions to the
number of transversions. A transition is a point mutation that changes a purine nucleotide (A
or G) to another purine, or a pyrimidine nucleotide (T or C) to another pyrimidine, whereas
a transversion refers to the substitution of a purine for a pyrimidine or vice versa. Although
there are twice as many possible transversions, because of the molecular mechanisms by which
they are generated, transition mutations are generated at higher frequency than transversions.
Expected value of this ratio for genome wide variations is in the range 2.0-2.1, whereas it is
in the range 3.0− 3.3 for the exonic variations. The default value for this parameter is set to
2.6 to make it suitable for both whole genome and exome data analysis.

The tables below give the prior probablities computed for the default values of the parameters
mentioned above. Table 4.1 gives the probabilities assuming the reference base is A, whereas
Table 4.2 gives the same when the reference base is a gap (this corresponds to an insertion in the
read). In these tables, the rows and the columns correspond to the two different alleles of the
genotype. Thus, for example, the prior probability for the genotype AT is given in row A and
column T . Of course, you will find the same value in row T and column A also.

A C G T -

A 9.984 ×10−1 2.174 ×10−4 5.652 ×10−4 2.174 ×10−4 6.250 ×10−5

C 2.174 ×10−4 1.087 ×10−4 1.229 ×10−7 4.726 ×10−8 1.359 ×10−8

G 5.652 ×10−4 1.229 ×10−7 2.826 ×10−4 1.229 ×10−7 3.533 ×10−8

T 2.174 ×10−4 4.726 ×10−8 1.229 ×10−7 1.087 ×10−4 1.359 ×10−8

- 6.250 ×10−5 1.359 ×10−8 3.533 ×10−8 1.359 ×10−8 3.125 ×10−5

Table 4.1: Prior probability of genotypes of a diploid genome when Ref = A

A C G T -

A 7.813 ×10−6 2.441 ×10−10 2.441 ×10−10 2.441 ×10−10 1.563 ×10−5

C 2.441 ×10−10 7.813 ×10−6 2.441 ×10−10 2.441 ×10−10 1.563 ×10−5

G 2.441 ×10−10 2.441 ×10−10 7.813 ×10−6 2.441 ×10−10 1.563 ×10−5

T 2.441 ×10−10 2.441 ×10−10 2.441 ×10−10 7.813 ×10−6 1.563 ×10−5

- 1.563 ×10−5 1.563 ×10−5 1.563 ×10−5 1.563 ×10−5 9.999 ×10−1

Table 4.2: Prior probability of genotypes of a diploid genome when Ref = -

Computation of the conditional probabilities P (D|G):
The computation of P (D|G) takes into account the probability of errors observed in the data under
each genotype G. It is assumed that the error in the observation of any base is independent of
observation error in any other base. In most cases, error rates are derived from the associated base
qualities as follows.

ε = 10−(base quality)/10
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The error rates may be adjusted by taking the mapping quality into consideration. A mis-aligned
read creates unreliable results irrespective of the base-qualities. Therefore, Avadis NGS has an
option to take into account the mapping qualities whenever provided by the aligner and uses the
minimum of the read mapping quality and individual base quality in place of base quality for its
computations.

In the absence of error rates, hard-coded error rates (that are technology-specific) are used. If error
rates for a particular technology are not present in Avadis NGS, it assumes a quality score of 30
for the base, which is interpreted as an error rate of 0.001.

If the numbers of As, T s, Cs, Gs, and −s in the reads at the locus being considred are na, nt, nc, ng,
and n−, respectively, then the conditional probability P (D|G) can be broken down as follows.

P (D|G)

= k [P (B = A|G)]
na [P (B = T |G)]

nt [P (B = C|G)]
nc [P (B = G|G)]

ng [P (B = −|G)]
n−

where B is the read base at the locus under consideration, and k is the number of distinct

permutations of the different read bases at that locus, and is equal to
(na+nt+nc+ng+n−)!

(na!)(nt!)(nc!)(ng !)(n−!)
. Note

that this factor will be present in both the numerator and the denominator in P (G|D). So the
final result doesn’t require this to be calculated.

If G is homozygous, the probability of observing each of the bases can be calculated as follows.

P (B = b|G =< g, g >) =

{
1− ε, if b is the same base as g
ε
3 , if b is not present in G

where b is the observed base.

For heterozygous genotypes G =< g1, g2 >, the probability is calculated as follows.

P (B = b|G =< g1, g2 >)

=
1

2
× P (B = b|Read came from chromosome 1) +

1

2
× P (B = b|Read came from chromosome 2)

=

{
1
2 ( ε3 ) + 1

2 (1− ε), if b is one of the bases in G
1
2 ( ε3 ) + 1

2 ( ε3 ), if b is not present in G

4.4.3 Further Notes on SNP Detection

� Calling out Multi Base Variants MNP identification currently does not use a different
algorithm; adjacent SNPs are grouped together and called MNPs. Note that the associated
score is the minimum of the scores for all individual SNPs comprising the MNP.

� Calling Single-deletions Single-deletions are also output as part of the SNP algorithm.
This is due to the fact that aligners introduce ‘‘gaps”, representing deletions into reads for
better mapping. Thus at each position a read may take one of 5 values: A, T, G, C, - (gap).
The gap is treated exactly as a nucleotide value and in case of a preponderence of gaps at a
location, a deletion is called. Since gaps do not have a quality score associated with them,
the average of the surrounding base qualities is used for the computation.

� Calling Insertions The problem with calling out insertions is that insertions can be of any
length and there might be more than four different types of variants at a single locus (which
is always between two reference bases) unlike in the case of substitutions. Hence the normal
method of variant detection cannot be applied in this case.
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Figure 4.9: Transcript structure

Here is what is done: All the insert sequences are grouped into a single type and the
probability that the location is a variant is calculated. If the score computed from this
probability is above the specified cut-off, a variant is declared. Then the top two insert
sequences are taken and the final genotype is the combination of these insert sequences that
gives the best score.

4.5 SNP Effect Analysis

SNP Effect Analysis investigates a list of SNPs and generates a report indicating the effect that
these SNPs have on the genes in a given annotation.

A transcript model has physical units called exons that are separated by introns. The transcript
also has logical units called 5

′
UTR, Coding region (Cd), 3

′
UTR. The final protein is created by

the coding regions and show no contribution from the UTRs (untranslated regions). The first base
of the 5

′
UTR is called the Transcription Start Site (TSS). The last base of the 3

′
UTR is called

the Transcription End Site (TES).

The first two and last two bases of each intron are very important for splicing. These sites are called
Donor and Acceptor sites. Fig. 4.9 shows a transcript structure with the important components.

The coding region is sequence of codons -- each of which is 3 nucleotides long. The length of the
coding region is therefore a multiple of 3. The first codon in the coding region is called the start
codon and the last is called the stop codon. Each codon is translated into an amino acid.

Classifying mutations according to annotation
Mutations could occur anywhere in the chromosome. As their functional impact depends on how
they affect protein formation, they may be classified accordingly.

� INTERGENIC Mutation: A mutation that does not fall within the neighborhood of any gene
in the annotation. (A neighborhood is defined based on a chosen value of δ.)

� UPSTREAM Mutation: Mutation occuring upstream of the transcript, i.e., within co-
ordinates [TSS − δ, TSS] (for +ve strand) or [TSS, TSS + δ] (for negative strand)

� DOWNSTREAM Mutation: Mutation occuring downstream of the transcript: say within
genomic co-ordinates [TES, TES + δ] (for +ve strand) or [TES − δ, TES] (for negative
strand)

� INTRONIC Mutation: Mutations occuring in intronic regions.

– ESSENTIAL SPLICE SITE Mutation: Mutations to the donor and acceptor sites of
the intron (i.e. two bases into the intron from either side)
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Figure 4.10: Mutations in a coding region

– SPLICE SITE Mutation: Mutations to locations of splicing signals (i.e. 3-8 bases into
the intron from either side, 1-3 bases into neighbouring exon).

� 5 PRIME UTR Mutation: Mutation in the 5
′

region.

� 3 PRIME UTR Mutation: Mutation in the 3
′

region.

� Coding Region Mutation: Mutations in the coding region are of two types.

– SYNONYMOUS CODING Mutations: Mutations that have no effect on the final
amino acid sequence (e.g. change of TTT codon to TTC codon still results in the
Phenylalanine(F) amino acid). These are called synonymous changes.

– Mutations that are non-synonymous have an effect on the amino acid sequence and are
classified accordingly.

Classifying non-synonymous mutations
Fig. 4.10 shows a sequence from the coding region of a transcript and its comparison against a
reference. The sequence has been split into codons for ease of explanation. Above the reference
sequence codons are written the corresponding amino acids from the codon translation table.
Similarly amino acids corresponding to the sample sequence codons are written directly below it.

The SNP detection algorithm correctly identifies SNPs at positions 6, 9 and 12. All involve a
change from C to G. One can see that each of the C → G SNPs has a different effect on the amino
acid sequence. The first change at position 6 causes no change in the amino acid sequence and
so is termed SYNONYMOUS CODING. The second mutation is termed NON SYNONYMOUS
CODING since amino acid changes from H to Q. The final change is termed STOP GAINED since
a stop codon has been introduced before the original stop codon in the reference.

Similarly, a change that mutated the reference stop/start codon would be classified as STOP
LOST/START LOST.

4.5.1 Challenges in SNP Effect Analysis

In this section we discuss a few of the challenges that present themselves during SNP Effect
Analysis.

� Sequential processing of SNP reports: Effect Analysis typically processes SNPs sequen-
tially, one by one. As long as the SNPs are single base pair mutations that do not occur
too close to each other, the effect of each SNP can be individually considered. However,
insertions, deletions, and multiple changes within a codon complicate the analysis.

– Multiple SNPs close to each other: This can cause erroneous classification of
mutations. For example, two SNPs in a codon taken together may result in a NON
SYNONYMOUS CODING classification. However, when processed one at a time, each
SNP may be considered as being a SYNONYMOUS CODING mutation.
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Mutation Location Classification
Coding region START LOST

STOP GAINED
STOP LOST
FRAMESHIFT CODING
NON SYNONYMOUS CODING
SYNONYMOUS CODING
SPLICE SITE

Intronic ESSENTIAL SPLICE SITE
INTRONIC
SPLICE SITE

Genic regions 5PRIME UTR
3PRIME UTR
SPLICE SITE

Non-genic regions UPSTREAM
DOWNSTREAM
INTERGENIC

Miscellaneous EXONIC (Coding region information absent)
NEAR GENE (Strand information for a gene absent)
GENIC (Transcript information for a gene absent)
COMPLEX VARIATION (MNP overlaps a boundary region
OR two or more variations occur concurrently in an MNP)

Table 4.3: Mutation classification based on region

– Indels: Any indel which is not a multiple of 3 are marked FRAMESHIFT CODING as
they cause a cascading change in the amino acid sequence. Indels that are multiples of
3 are considered NON SYNONYMOUS CODING mutations. However, if they appear
as two separate entries in the SNP report, sequential processing could cause them to
erroneously be reported as FRAMESHIFT CODING mutations.

– Several types of variation occuring in a single MNP: If an MNP simultaneously
exhibits more than one type of mutation, for example, an insertion and two SNPs, effect
analysis becomes complicated. In this case, the effect is simply termed COMPLEX
VARIATION.

– Boundary region issues: If the locations involved in an MNP overlap boundary
regions, so that part of the MNP would be classified in one way and part in another,
the effect is again called COMPLEX VARIATION.

� Ploidy: Further complications arise from the fact that a single chromosome is not being
sequenced. It is possible therefore to have two SNPs one from each copy of the chromosome.
Considering the combined effect of the two SNPs would be erroneous in this case.

� Missing information: If transcript annotations do not specify the coding region, the 5
′

UTR, 3
′

UTR, and Cds are not known. The only calls that can be made are - EXONIC (if it
falls in an exon), INTRONIC, ESSENTIAL SPLICE SITE, SPLICE SITE, UPSTREAM,
DOWNSTREAM, INTERGENIC.

If strand information is not available for a particular gene, then UPSTREAM/DOWNSTREAM
calls also cannot be made. Instead, these calls are termed NEAR GENE mutations.

In case a gene is identified by the annotation but all transcript information for the gene is
missing, intronic and exonic regions are not known. In this case, the call is GENIC.
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Table 4.3 gives a list of mutation classifications based on the location of the mutation.



Chapter 5

Large Structural Variants
Analysis

5.1 Introduction

Structural Variations (SVs) are differences in the DNA structures of individuals over base pairs
numbering from a few hundred to a million. These could be inclusions, exclusions or rearrangements
of portions of DNA on individual chromosomes. Such determinations are always made in comparison
to a given reference DNA structure. At present we consider the following kinds of structural
variations. Note that the figures and discussions included in this chapter use Illumina paired-end
(Forward-Reverse) reads as illustrations. The same arguments apply to other next-generation
sequencing technologies as well.

1. INDEL: This term is an amalgam of INsertions and DELetions in a DNA sequence when
compared to a reference.

� Insertion: Presence of additional base pairs in a DNA sequence.

� Deletion: Absence of a sequence of base pairs in a DNA sequence.

Fig. 5.1 illustrates single and multiple insertion and deletion events. Insertions are highlighted
in blue and deletions in beige. (The figure also depicts substitution events highlighted in
pink. See Chapter 4 for more details about these.)

2. Inversion: Reversal of a part of a DNA sequence, with the positions of the previously
positive and negative strands interchanged and reversed as in Fig. 5.2. Note that the inverted
segment re-attaches in a way that preserves the 5′ -- 3′ orientation.

Figure 5.1: Insertions and deletions in DNA

75
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Figure 5.2: Inversion events in DNA
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Figure 5.3: Intra-Chromosomal Translocation

Figure 5.4: Intra-Chromosomal Inverted Translocation

3. Translocation: Deletion of a portion of DNA at a location and its insertion elsewhere.
This could happen within a chromosome or even across chromosomes. Fig. 5.3 illustrates a
translocation phenomenon.

4. Inverted Translocation: When a DNA sequence detaches itself from a chromosome,
inverts itself and re-attaches to another portion of the same chromosome or to a different
chromosome, the resulting structural variant is called an inverted translocation. Fig. 5.4
illustrates such a phenomenon.

Identification of SVs is fairly complex and can only be achieved via paired-end or mate-pair reads.
See Section 1 for more detail. By varying the fragment lengths, we gain different insights into
the genome sequence, especially with respect to SV identification. As the library fragment length
distribution (assumed to be Gaussian with a given mean and variance) as well as the relative
orientation and order of the mates is known a priori, deviant behavior is indicative of an underlying
SV.

Each technology employs a different protocol during mate-pair and paired-read generation. The
protocols are briefly described in Table 1.1 for completeness.

The primary challenges in SV prediction involve identification and clustering of deviant reads
and then analysis and interpretation of the underlying cause of deviance. Ploidy issues introduce
additional complexity, as each copy of the chromosome can differ in structure. Thus some fraction
of reads from a region may indicate one kind of variant, while the rest conform with the reference.
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Figure 5.5: Read behavior in the presence of a deletion

5.1.1 Read characteristics in the presence of underlying structural vari-
ation

In this section, we will explore deviant read behavior caused by SVs. Each SV introduces trademark
peculiarities in the pair orientations and inter-mate distance. These may be used to typify the SV
and deduce its location.

5.1.1.1 Deletions

If a portion of DNA is missing from the sample, reads in the adjoining regions will show a longer
inter-mate distance than was originally introduced during library preparation. Fig. 5.5 clearly
illustrates this effect. The dotted portion of size 300bps in the reference is absent in the sample,
representing a deletion. Reads immediately to the left of the deletion are mapped to the reference
as expected, however, their mates align to the reference with a shift of 300 bps to the right. Thus
the increase in the inter-mate distance is clearly linked to the length of the deletion. Furthermore,
no reads align to the deleted portion on the reference in homozygous condition.

Note that if the deleted region is very small (on the order of a standard deviation of the original
library fragment length), the increase in inter-mate distance may not be noticeable and the deletion
may go undetected.

5.1.1.2 Insertions

If a portion of DNA is inserted into the sample in comparison to the reference, reads in the adjoining
regions will show a shorter inter-mate distance than expected. As seen in Fig. 5.6, 400 extra base
pairs are present in the sample DNA. Reads to the near left of the insertion, such as R1,and R6,
map to the reference as expected, but their mates R

′

1, and R
′

6 align 400 bps earlier than anticipated.
The decrease in the inter-mate distance for such reads relates directly to the length of the insertion.
Furthermore reads such as R2, R4, R

′

3 and R
′

5 that directly lie within the inserted region, will not
map to the reference at all; thus their mates R

′

2, R
′

4, R3 and R5 show up as unmatched reads.

Again in case of a very small insertion (on the order of a standard deviation of the original library
fragment length), the decrease in inter-mate distance may be insignificant and the insertion may
be ignored. In case of large insertions, specifically, where the length of the insertion exceeds the
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Figure 5.6: Read behavior in the presence of an insertion

inter-mate distance, all reads to the near left or near right of the insertion have mates falling
within the insertion. As a result, all of these end up unmatched upon alignment to the reference.
Reads R1, R3, R

′

5 and R
′

6 in Fig. 5.7 illustrate this point. Of course read-pairs such as R2-R
′

2, and
R4-R

′

4 are discarded as unmapped reads, since they lie within the inserted region.

5.1.1.3 Inversions

When a portion of DNA detaches from the chromosome and re-attaches with reversed orientation,
the mutation is termed an inversion. Fig. 5.8 illustrates such an instance. Note that the negative
strand of the inverted portion now attaches to the positive strand of the chromosome and vice
versa. Thus all reads lying in the inverted region change orientation. This effect is illustrated
in Fig. 5.8. Reads R1, R2, R4 and R6 have one mate lying within the inversion, and the other
outside. When mapped to the reference, the orientation of the mates is no longer Forward-Reverse
as per the Illumina protocol. See Table 1.1. It now changes to forward-forward or reverse-reverse.
Note that the inter-mate distance for these reads changes as well; it may increase (as in the case of
R2 and R4) or decrease (as for R1 and R6), depending on the position of the read in the inverted
area. For reads such as R3 and R5, where both mates lie in the inversion, the orientation is now
switched, but the inter-mate distance remains unchanged. As the orientation is still compatible
with Illumina formats (see Chapter 1 for details), these will not be identified as deviant reads.

5.1.1.4 Translocations

Read behavior in the presence of translocations depends on whether the segment translocates
within the same chromosome or onto a different chromosome. Inter-chromosomal translocations
are simpler to detect as the mates of some of the reads close to the translocated region map to
a different chromosome. On one chromosome, the loss of DNA appears as a deletion; on the
other, the introduction of the segment shows up as an insertion. In Fig. 5.9 a segment from
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Figure 5.7: Read behavior in the presence of a large insertion

Figure 5.8: Read behavior in the presence of an inversion
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Figure 5.9: Read behavior in the presence of an inter-chromosomal translocation

Figure 5.10: Read behavior in the presence of a large inter-chromosomal translocation

Chromosome B gets detached and re-attaches itself to Chromosome A. Reads R2 and R4 get
mapped to Chromosome B while their mates align to Chromosome A. Similarly, reads R3 and R5

map to Chromosome A and their mates to Chromosome B. Reads R1 and R6 map to Chromosome
A with a decreased inter-mate distance of 200 bps in place of the original library insert length of
400 bps, indicating an insertion on Chromosome A. On the other hand reads R7 and R8 map with
an increased inter-mate distance of 600 bps in place of the original library insert length of 400 bps,
suggesting a deletion on Chromosome B. If the translocated region is large, as in Fig. 5.10, the
insertion on Chromosome A manifests in the form of several unmapped reads in the vicinity of the
translocation (such as R1, R3, R

′

4 and R
′

6), instead of mates with decreased inter-mate distance.

Note that translocations of very small regions however, might show up as two unrelated events:
An insertion on one chromosome and a deletion on another.

Intra-chromosomal translocations involve a shift along the same chromosome as shown in Fig. 5.11.
Note that a translocation along the same chromosome can be viewed as a lateral shift of two regions
(both shown by dotted lines), one to the right and the other to the left. Paired-end reads that
lie entirely within or entirely outside these regions, such as reads R2 - R

′

2, and R5 - R
′

5 conform
to the expected read behavior. Reads in the left-shifting region with a mate in the right-shifting
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Figure 5.11: Read behavior in the presence of an intra-chromosomal translocation: Small shift
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Figure 5.12: Read behavior in the presence of an intra-chromosomal translocation: Large shift

Relation between LA, LB and D Reads Observed
Normal Insertion Deletion Translocation

D ≤ LA, LB 4 8 4 4
LA ≤ D ≤ LB or LB ≤ D ≤ LA 4 4 4 4
LA, LB ≤ D ≤ LA + LB 8 4 4 4
LA + LB ≤ D 4 4 4 8

Table 5.1: Intra-chromosomal translocation: Read patterns observed

region, such as R7 - R
′

7 and R9 - R
′

9 could deviate both in orientation and inter-mate distance.
Reads with one mate in a translocating region and one in a region that does not experience a shift,
conform in orientation, but may exhibit a larger or smaller inter-mate distance than expected,
commensurate with a deletion or insertion respectively. In Fig. 5.11, reads R1 - R

′

1, R3 - R
′

3, R6 -
R
′

6 and R8 - R
′

8 imply deletions, while R4 - R
′

4 and R10 - R
′

10 are suggestive of an insertion.

Note that while reads denoting deletions are always observed, those indicating insertions are not
always present. Fig. 5.12 demonstrate such a case. Here deletions may be inferred at both ends
of the region experiencing shift, but there is clearly no read suggesting an insertion. In fact, the
read patterns observed depend on the relative sizes of the translocated region LA and its shift LB
in comparison to the original library insert length D, between mates. Table 5.1 lists the reads
observed in each situation. We follow a convention where the region on the right is considered the
translocated region, and the region on the left, the shift. The same arguments hold in the reverse
situation as well.
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Figure 5.13: Read behavior under an inverted inter-chromosomal translocation

5.1.1.5 Inverted Translocations

As in the previous case, inverted translocations are easier to detect when the shift occurs onto
another chromosome. The read behavior in this case, is very similar to a simple inter-chromosomal
translocation. Here too, one chromosome experiences loss of DNA which appears as a deletion,
while the other exhibits an insertion.The one difference in the current situation, is that read-pairs
with a single mate lying in the translocated region get mapped either in a forward-forward or
reverse-reverse direction.

In Fig. 5.13 a segment from Chromosome B gets detached, inverted and attached to Chromosome
A. Reads R1 and R6 map to Chromosome A with a decreased inter-mate distance of 200 bps in
place of the original library insert length of 400 bps, indicating an insertion on Chromosome A. On
the other hand reads R7 and R8 map with an increased inter-mate distance of 600 bps in place
of the original library insert length of 400 bps, suggesting a deletion on Chromosome B. Reads
R2 and R4 get mapped to Chromosome B while their mates align to Chromosome A. Note that
for these read-pairs, both mates map in the reverse direction. Similarly, reads R3 and R5 map to
Chromosome A and their mates to Chromosome B, all in the forward direction.

If the translocated region is large, the insertion manifests in the form of several unmapped reads in
the vicinity of the translocation instead of mates with decreased inter-mate distance.

Note that an intra-chromosomal translocation whether inverted or non-inverted can be viewed as
a lateral shift of two regions, one to the right and the other to the left. In the absence of inversion,
it is not possible to distinguish whether the left segment detached and re-attached or the right.
However, in case of inverted translocations along the same chromosome, this distinction is now
possible as the inverted portion is identified as the shifted segment.

Fig. 5.14 illustrates an inverted intra-chromosomal translocation, where a segment with length LA
has shifted left by a distance LB and re-attached itself in an inverted direction.

Paired-end reads that lie entirely within or entirely outside the two translocated regions (namely,
the shifted and inverted segment of length LB , and the shift of length LA), such as reads R6 - R

′

6,
and R9 - R

′

9 conform to the expected read behavior. Read-pairs with one mate in the inverted
region and the other outside, such as R2 - R

′

2, R3 - R
′

3, R4 - R
′

4 and R5 - R
′

5 could deviate both
in orientation and inter-mate distance. Read-pairs with one mate in the non-inverted region of
length LB and one in a region that does not experience a shift, conform in orientation, but may
exhibit a larger or smaller inter-mate distance than expected, commensurate with a deletion or
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Figure 5.14: Read behavior under an inverted intra-chromosomal translocation: Small shift
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Figure 5.15: Read behavior in the presence of an intra-chromosomal translocation: Large shift

insertion respectively. In Fig. 5.14, reads R8 - R
′

8, R10 - R
′

10, imply deletions, while R1 - R
′

1 and
R7 - R

′

7 are suggestive of an insertion.

As with intra-chromosomal translocations, in this case too, reads denoting insertions are sometimes
absent, though deletions are always observed. Fig. 5.15 illustrates this point. Here a deletion may
be inferred at one end of the region experiencing shift, but there is clearly no read suggesting an
insertion. As discussed previously, the read patterns observed, depend on the relative sizes of the
inverted region LA and its shift LB in comparison to the original library insert length D, between
mates. Table 5.1 lists the reads observed in each situation.

5.1.2 Key definitions and concepts

In this section we introduce some fundamental concepts used by the SV identification algorithm.
We first define paired read coverage at a location and then introduce the notion of ought-to-span
reads. The latter are read-pairs with only one mate mapping to a particular chromosome and are
handled in a special way by Avadis NGS.

5.1.2.1 Paired Read Coverage

Paired read coverage at a point is defined as the number of read-pairs spanning the point. In other
words, it is the number of reads starting at the point or to its left, whose mates end to the right of
the point. (Here the term start denotes the left end of the read and the term end refers to its right
end.)

Fig. 5.16 illustrates how the paired read coverage is computed at various points across a section of
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Figure 5.16: Paired Read Coverage

the reference. The reads included at each considered point are listed in grey.

While computing the paired read coverage at a point, Avadis NGS only considers forward and
reverse reads lying within a specific window. Reads whose mates have been previously processed
are discarded, and the paired read coverage is computed from the remaining reads. The longer the
size of the window, the greater the storage requirements for the algorithm.

5.1.2.2 Ought-to-span reads

Read-pairs with only one mate mapping to a particular chromosome are termed ought-to-span
reads. This typically happens under the following situation:

� The two mates map onto different chromosomes, possibly indicating an underlying transloca-
tion or inverted translocation.

� The mate is completely missing, possibly indicating a large insertion.

For such ought-to-span reads, the algorithm introduces an imaginary mate, a mean insert length
away from the read. This enables the clustering algorithm (discussed later in Section 5.3.2) to
make decisions on whether such reads should be grouped together as representative of the same
underlying phenomenon.

5.2 Overview of Algorithms

Avadis NGS performs a search for SVs on a per-sample, per-chromosome basis. For each sample,
the SV search is parallelized over chromosomes. The algorithm requires a minimum presence of
total and deviant read pairs as necessary evidence to call an SV. Previous discussions suggest three
different types of deviant read behavior corresponding to different kinds of SV as follows:
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1. Reads deviate in terms of their inter-mate distance, but not in orientation: This
is suggestive of insertions and deletions. A read is considered deviant if its inter-mate distance
LInter−mate differs from the expected inter-mate distance µ̂ by more than a user-determined
minimum L. This number L takes default value 2σ̂, where σ̂ is the estimated standard
deviation of the inter-mate distance.

2. Reads deviate in orientation: Based on the type of deviation, the underlying SV could
be an inversion or an intra-chromosomal translocation.

3. Reads have mates that are missing or do not map to the same chromosome: This
implies long insertions or inter-chromosomal translocations.

End-to-end algorithm:

1. Computation/Estimation of sample distribution parameters: To mark a read as
deviant, it is necessary to investigate whether the deviation of the observed inter-mate
distance from the library mean is more than twice the standard deviation. The expected
mean and standard deviation are part of the experimental process and can be presented as a
field in the input SAM/BAM file. However, being optional fields, Avadis NGS offers an
algorithm that approximates these by a computed mean, µ̂, and standard deviation, σ̂ of
the ‘‘normal” (non-deviant) reads. Details of estimation of these parameters are provided in
Sections 5.3.1.1 and 5.3.1.2. The µ and σ attributes of the sample can be modified by the
user from the sample inspector.

In addition to these, Avadis NGS also pre-computes the average paired read coverage. This
involves computing the paired read coverage (defined earlier in Section 5.1.2.1), at the read
start position for each valid forward read and the read end position for each valid reverse
read and then taking the average over all such positions. While computing the paired read
coverage at a point, Avadis NGS only considers forward and reverse reads lying within a
window of 2µ̂+ 4σ̂ before the point.

This quantity is useful in providing a threshold on the minimum presence of deviant reads C
required at a location, for it to be considered a candidate for further investigation.

2. Location-wise processing: Reads mapping to a particular chromosome are ordered ac-
cording to the locations of their start positions. For each start position in sequence along the
chromosome, a window of length 2µ̂ − 4σ̂ preceding the start position is considered. The
algorithm proceeds with the following steps in the given window:

� Unmated reads

The number of spanning pairs with one mate missing, Nunmated are counted. The
corresponding fraction funmated, of such read pairs to the total spanning pairs, Ntotal, is
computed.

� Paired reads with skewed orientation

The number of spanning pairs with skewed orientation, Nskewed orientation, are counted.
The corresponding fraction fskewed orientation, of such read pairs to the total spanning
pairs, Ntotal, is computed.

� Paired read with expected orientation

The number of spanning pairs with expected orientation but deviant inter-mate distance,
Ndeviant IMD, are counted. The corresponding fraction fdeviant IMD, of deviant to total
spanning pairs Ntotal, is computed.

If any of the fractions funmated, fskewed orientation, or fdeviant IMD exceeds a user-specified
threshold f (minimum local deviant read fraction), and the corresponding count (Nunmated,
Nskewed orientation, or Ndeviant IMD) exceeds C then
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� Deviant spanning read pairs are grouped into clusters.

– In case of unmated reads and read pairs with skewed orientation, the clustering
algorithm used is the one presented in Section 5.3.2.3.

– In the case of reads with normal orientation but deviant inter-mate distance, the
clustering algorithm used could be either the PEMer or the k-BIC algorithm, both
discussed in Section 5.3.2.2.

� The cluster with the largest number of spanning pairs is selected. If the fraction of
cluster member pairs to total spanning pairs falls below deviant fraction threshold f ,
the cluster is disregarded. Otherwise, it is merged with a previously created SV via the
merging algorithm in Section 5.3.2.3. If the cluster cannot be merged with any existing
clusters, a new SV is created.

3. Post-processing:

� Clusters are suitably combined to deduce the underlying SV and its boundaries and size
are determined. Details are presented in Section 5.3.3.

� The SV is determined to be homozygous or heterozygous based on the ratio of deviant
reads in the dominant cluster to the total number of reads (with the exception of
INDELs detected by the k-BIC algorithm). Details are available in Section 5.3.3.2.

5.3 Mathematical Details of the SV Detection Algorithm

5.3.1 Estimation of Inter-mate Distance Distribution Parameters

Assuming that the inter-mate distance follows a normal distribution, this section discusses how the
associated mean µ̂ and standard deviation σ̂ are computed in Avadis NGS.

5.3.1.1 Estimation of Mean Inter-mate Distance

The aim of this calculation is to divine the original inter-mate insert length introduced during library
preparation. A mean taken across all possible mate-pairs would provide a decidedly distorted
result, as it would include deviations relating to structurally variant reads, which exhibit both
short and long extreme values and hence are outliers in the data set. This makes it imperative to
separate the ‘‘normal” from the deviant reads before computing the mean. The algorithm uses
a Trimmed Mean, obtained by discarding a pre-decided percentage (hard-coded to 25% in the
Avadis NGS algorithm) of data in both the left and the right tails of the distribution of the
inter-mate distance for all read pairs. The details of the algorithm are as follows:

1. Bin inter-mate distance for all mate-pairs. Each bin is of width one. A maximum is set for
the number of bins (hard-coded to 50 million in Avadis NGS) (same as insert length). A
special bin is formed for distances exceeding 50 million (in the expectation that there would
be very few elements in this bin).

2. Beginning from the left of the distribution, the number of reads in each bin are summed
until they reach 25% of the total number of read-pairs; they are then removed. A similar
approach is applied from the right-side of the distribution.

3. The mean µ̂ of the remaining observations is calculated.
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Reads included
Mate alignment Orientation Inter-mate

No. Cluster Types on the same (F- Forward/ distance
chromosome (R - Reverse)

1. Deletion Yes F-R Larger than expected
2. Insertion Yes F-R Smaller than expected
3. Large Insertion Unmapped mates - -
4. Inversion Yes R-R AND F-F Smaller AND larger

than expected
5. Inter-chromosomal Different chromosome - -

translocation
6. Intra-chromosomal Yes R-F Smaller OR larger

translocation than expected

Table 5.2: Cluster Types

5.3.1.2 Estimation of the Standard Deviation of the Inter-mate Distances

The approach used in Section 5.3.1.1 cannot be used for computing standard deviation: While this
would certainly remove most deviant reads, it might also discard normal reads with large standard
deviation. Thus the standard deviation estimate from the remainder of the population might be
smaller than originally introduced. In view of this, we use a more robust measure of dispersion
called the Median Absolute Deviation or MAD, on which outliers have very little effect. The
standard deviation is then approximated from the calculated MAD.

The details of the algorithm are as follows:

1. Calculate the median of inter-mate distances over all read pairs.

2. For each read pair, compute the absolute deviation of the inter-mate distance from the
previously calculated median.

3. Now compute the median of the absolute deviations. This is the MAD.

4. As the inter-mate distance follows a normal distribution, the standard deviation σ̂ =
1.4826×MAD.

5.3.2 Clustering Algorithm Used for SV Identification

Deviant reads in a region collectively indicate presence or absence of an underlying SV. Avadis
NGS uses a clustering algorithm to group reads in a region that exhibit similarity in deviant
behavior.

A cluster may either contain only read-pairs or only unmated reads. If a read belongs to a cluster,
its mate (if present on the same chromosome) must also belong to the same cluster.

5.3.2.1 Cluster Properties

� SV Tag

Each cluster has an SV tag declaring it as an insertion, large insertion, deletion, inversion,
inter-chromosomal translocation or intra-chromosomal translocation cluster. Table 5.2
describes the characteristics of member reads for each cluster type. Note that the inter-mate
distance for reads under inversion have a wide spread. Under intra-chromosomal translocation,
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Cluster Types Predictive SV region
Start position End position

Deletion/Insertion Right-most position of Left-most position of
right-most F read left-most R read

Large Insertion Right-most position of Left-most position of
right-most F read left-most R read
(excluding imaginary reads) (excluding imaginary reads)

Inversion Left-most position of Left-most position of
left-most R read right-most F read

Intra-chromosomal Right-most position of Left-most position of
translocation right-most R read left-most F read
Inter-chromosomal Right-most position of Left-most position of
translocation right-most F read left-most R read

(excluding imaginary reads) (excluding imaginary reads)

Table 5.3: Predictive SV region for each cluster type

the inter-mate distance has standard deviation commensurate with that present in the data,
namely σ̂.

Figure 5.17 illustrates each of the six types.

� Cluster region

For a cluster of paired-reads, the cluster region extends from the left-most position of the
left-most read in the cluster to the left-most position of the right-most read in the cluster.

In case of unmated or ought-to-span reads, their imaginary mates created in the preprocessing
step (discussed earlier in Section 5.1.2.2) are taken into account while defining the cluster
region.

Figure 5.17 provides a clear picture of the cluster region for each cluster type.

� Estimated inter-mate distance of the cluster

The estimated inter-mate distance of a cluster is defined by the average of inter-mate distances
for all reads within the cluster. A cluster of ought-to-span reads has inter-mate distance set
to the mean expected inter-mate distance µ̂ by design.

� Predictive SV region

The predictive SV region for a cluster, or in other words, the region where the SV is expected
to lie based on the reads present in the cluster, is defined differently for each cluster. Table
5.3 provides the definitions, while Figure 5.17 gives a pictorial description.

Note that in the case of inter-chromosomal translocation, two chromosomes are involved: Chromo-
some A, experiencing a deletion, and Chromosome B, experiencing an insertion. The cluster is
formed only on Chromosome A and ought-to-span reads are also included. Mates of reads in this
cluster all lie on Chromosome B and are automatically grouped together. However, they do not
form a cluster in the sense used here, and so are not associated with any of the cluster properties.
This is depicted in Figure 5.17 by denoting the group by an ellipse instead of a rectangle.

5.3.2.2 Cluster Algorithms Used for Creating INDEL Clusters

INDELs are determined based on deviations in their inter-mate distance from a norm. Avadis
NGS provides two algorithms to detect these SVs: One is the Paired-End-Mapper (PEMer)
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Figure 5.17: Cluster region
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algorithm [21], which compares the inter-mate distance with a pre-determined cutoff and draws
conclusions as to the presence/absence of an insertion or deletion. The other, the k-BIC method,
uses cluster analysis of insert lengths to classify the reads into an appropriate number of groups,
each group being called a particular type of SV.

The PEMer Algorithm

1. Let the mean library insert length be µ. Let the standard deviation of original library insert
lengths be σ. If these quantities are given by the user, then they are used for subsequent
calculations. If these are not given, then these quantities are estimated from the data. In
either case, these quantities are respectively denoted by µ̂ and σ̂, as explained in Sections
5.3.1.1 and 5.3.1.2 respectively. For subsequent analysis these estimates are used.

2. Find all the paired reads that overlap a particular point in the reference.

3. These points are the start of all the reads.

4. Carry out the following steps for each of the points:

(a) Select read-pairs having normal orientation. Discard those which do not have normal
orientation.

(b) Find the deviant read pairs based on Table 5.5, given in Section 5.3.5, which gives
cut-off values C. This table is adapted from Korbel et al. (2009) [21]. Only those
reads with insert lengths greater than mean + C× the standard deviation, are used for
subsequent analyses.

(c) Run the clustering algorithm explained earlier in Section 5.3.2 on all the reads obtained
in (2) above.

(d) Remove clusters which contain less than a user-specified number d of deviant read-pairs.

(e) Tag each of the remaining clusters as an insertion cluster or a deletion cluster based on
the average inter-mate distance of the cluster---a short one if it is less than µ̂− 2σ̂ and
a long one if it is greater than µ̂+ 2σ̂. Discard those that are neither short nor long.

(f) Consider the possibility of merging clusters by applying the method described in Section
5.3.2.

(g) Consider the cluster with the largest number of reads as the SV cluster.

(h) Detect the SV region as explained later in Section 5.3.2.

The k-BIC Algorithm

This is an algorithm to cluster the reads into an optimal number of clusters by their insert lengths.
The algorithm is a combination of the k-means algorithm, which clusters reads into a given number
k of groups, followed by the application of a criterion, called the Bayesian Information Criterion
(BIC) to choose the most suitable value of k in a given range. The k-means algorithm is an
iterative algorithm which groups the given observations into k groups in such a way that the sum
of squares of distances between objects within the groups is minimized in an effort to make the
groups homogenoeus. If k is not fixed then making a large number (say, as many as n the number
of observations) of groups will make the total within group sum of squares small; in the limit if
n = k, then this can be made 0. However, such a solution will over-fit the data and make its
predictive ability poor. Hence a compromise between the minimization criterion of sum of squares
and the number of groups is necessary and this is achieved by introducing a penalty term added to
the criterion which will discourage large k. One such combination of the k-means criterion and a
penalty term is the BIC. Thus in our approach we find clusters for various values of k = 2, 3, 4, 5
and choose clusters based on the value of k, which is best (least) according to BIC. Details of this
method are given in Section 5.3.4.

Detection of Smaller Indels Using k-BIC Algorithm
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1. Determine the optimal number of clusters of read pairs using the k-BIC algorithm.

2. If this does not exceed P , the user-specified ploidy, retain the clusters, otherwise discard
them.

3. Determine the deviant clusters with the help of the confidence interval, explained below:

(a) Compute (µ̂i − 1.96σ̂√
ni
, µ̂i + 1.96σ̂√

ni
), where µ̂i is the mean of insert lengths of reads in this

cluster; σ̂ is standard deviation of all the reads computed as explained in 5.3.1.2.

(b) If this interval contains µ̂, the given mean of insert lengths or mean of all the reads
computed as explained in 5.3.1.1, then we conclude that the cluster thus formed is not
a deviant cluster and hence is not an INDEL. Else it is considered to be a valid INDEL.

4. Remove any cluster in which the number of deviant reads is less than the user-specified
cutoff, d; this step is the same as in PEMer.

5. Pick the best such cluster (this is defined as the cluster containing the largest number of
deviant reads). This cluster is considered to be the SV cluster; this step is the same as in
PEMer.

6. If the number of clusters formed is more than one (it does not matter whether they are
deviant or non-deviant), mark the SV as heterozygous, otherwise homozygous.

7. Detect the SV region as explained later in Section 5.3.2. This step is same as in PEMer.

8. Consider the possibility of merging clusters by applying the method described in Section
5.3.2; this step is the same as in PEMer.

Compute ∆i, i = 1, 2, . . . , k, the INDEL lengths associated with clusters i as ∆i = µ̂i − µ̂.

5.3.2.3 Creating and Merging Clusters

The previous section addressed algorithms used for creating insertion and deletion clusters. This
section addresses the algorithms used to merge previously created clusters of each kind, including
insertion/deletion clusters.

The same algorithm is also used to create and merge the remaining types of clusters given in
Table 5.2. The approach taken is to consider each new read pair as a independent, small cluster of
two reads. The new cluster is included into an existing cluster if it satisfies the conditions of the
merging algorithm.

The merging algorithm incorporates a set of criteria listed below:

1. SV tag criterion

The two clusters must have the same SV tag.

2. Similar estimated inter-mate distance criterion

The two clusters A and B must have similar estimated inter-mate distance (EID), where
similarity in this case requires any ONE of the following conditions to be satisfied:

(a) 0.9 ≤ EID(A)
EID(B) ≤ 1.0 with A being the cluster with the smaller EID)

(b) In case of inversions: |EID(A)− EID(B)| ≤ 2µ̂+ 4σ̂.

(c) In all other cases: |EID(A)− EID(B)| ≤ 4σ̂.
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Figure 5.18: Merging Clusters

where µ̂ is the mean and σ̂, the standard deviation of the inter-mate distance, by design
during library preparation or as estimated by Sections 5.3.1.1 and 5.3.1.2

For deletion clusters, there is an additional requirement that the span of the predicted SV
region should exceed 0.7 times the EID.

3. Distance between clusters criterion

This ensures that reads that are too far apart are not included in the same cluster. It checks
the distance between the start positions of the two clusters and also the end positions of the
two clusters, shown by w and z respectively in Figure 5.18. Both distances must lie within a
certain threshold; this threshold is 2µ̂+ 4σ̂ for inversion clusters, µ̂+ 2σ̂ for all other clusters.

4. Cluster region overlap criterion

The fractional overlap (defined by the ratio of the length of the intersection of the two
clusters to that of their union) must exceed a lower threshold of 0.5. Figure 5.18 shows an
example where a new read pair Rn - R

′

n is examined for inclusion in an existing cluster A.
The new read pair defines a cluster B. The length of the union of the two clusters as shown
in the figure is w + y, and that of the intersection, y − z. The cluster is a valid candidate for
inclusion if it meets the condition y−z

w+y > 0.5.

5. Predictive SV region overlap criterion

The formulation also considers the predictive SV region, i.e. the region where the SV is
expected to lie. The previous example shown in Figure 5.18, is further elaborated in Figure
5.19. Two clusters may only be merged if the ratio of the length of the intersection of their
predicted SV regions to that of their union exceeds 0.4. In Figure 5.18, the length of the
intersection of the predictive SV regions of clusters A and B is v, and that of their union is
x+ y − u. The condition v

x+y−u > 0.4 must be met for cluster B to be merged with A.

Note that all criteria need not be satisfied for merging clusters. Table 5.4 displays conditions under
which clusters of various types may be merged.
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Figure 5.19: Predictive SV regions in merging clusters

Cluster Types Merge criteria
SV Similar estimated Distance between Cluster region Predictive SV
tag inter-mate distance clusters overlap region overlap

Deletion 4 4 4 4 4
Insertion 4 4 4 4 8
Large Insertion 4 8 4 4 8
Inversion 4 4 4 4 8
Inter-chromosomal 4 8 4 4 8
translocation
Intra-chromosomal 4 4 4 4 4
translocation

Table 5.4: Cluster Merge Criteria
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As noted before, for an inter-chromosomal translocation, a cluster is formed on one chromosome
only, specifically the one experiencing a deletion. The criteria for merging are checked on this
cluster only. If a read is merged into the cluster on this chromosome, its mate automatically gets
grouped with the mates of other cluster members on the insertion chromosome. The algorithm
does however check that all reads included in the cluster on the deletion chromosome have mates
on the same chromosome.

5.3.3 SV Post-processing Issues

As seen earlier in Section 5.1.1, some SVs manifest in the form of different read clusters. For
example, intra-chromosomal translocations are typically represented by a single translocation cluster
flanked by two deletion clusters. Sometimes, insertion clusters are also evident. Post-processing
challenges include

� Converging the relevant clusters into a single SV call

� Identifying the boundaries and the size of the SV region. This is typically done using the
predicted SV regions defined in Table 5.3, the average or expected inter-mate distance, µ̂,
described in Section 5.3.1.1 and the estimated inter-mate distance of the SV cluster, EID,
as defined in Section 5.3.2.3.

� Classifying a call as heterozygous or homozygous.

5.3.3.1 SV Boundary Determination

Deletions

An SV deletion manifests as a single deletion cluster. The boundaries of the deletion are given by
the boundaries of the corresponding predicted SV region. The size of the SV, SVsz, is given by

SVsz = min (PRspan, EID − µ̂) ,

where PRspan is the span of the predictive SV region.

Insertions

In case of insertions, the clusters evident depend on the size of the inserted region.

If the inserted region is larger than the library inter-mate distance, only a large insertion cluster
is visible. For large insertions, the point of insertion can be estimated through the predicted SV
region in the corresponding cluster. The size of the insertion, however, cannot be estimated.

For smaller insertions, both a large insertion cluster and an insertion cluster may be present. The
large insertion cluster should be discarded. The region of insertion is denoted by the predicted SV
region for the insertion cluster; its size SVsz, is given by SVsz = µ̂− EID.

Inversions

Inversions result in single inversion clusters; the corresponding predicted SV region define the SV
boundaries, and the size of the SV is the span of this region, i.e., SVsz = PRspan.

Inter-chromosomal Translocation

In this case, inter-chromosomal translocation clusters are seen on both chromosomes along with a
deletion cluster on one chromosome. If the translocated region is small, an insertion cluster is also
present on the other chromosome.

The boundaries of the translocated region on the deletion chromosome can be found proceeding
exactly as for a deletion, described in Section 5.3.3.1. On the insertion chromosome, the point of
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Figure 5.20: Boundary determination for deletions

insertion is found from the predictive region of the translocation cluster. It may also be deduced
from the predictive region of the insertion cluster when the latter is present, i.e. in case of small
translocations.

The size of the SV region can be derived from the deletion cluster and if present also from the
insertion cluster following the approach outlined in Sections 5.3.3.1 and 5.3.3.1.

Inter-chromosomal Inverted Translocation

Inter-chromosomal translocations with and without inversion are very similar in physiognomy.
One chromosome experiences a deletion, while another an insertion. A deletion cluster is therefore
visible in both inverted and non-inverted translocations. An insertion cluster is also present in case
of small translocations. Inter-chromosomal translocation clusters appear on both chromosomes in
both cases.

The one significant difference between an inverted versus a non-inverted translocation is in the
orientation of the reads in the translocation cluster. In the former case, the directions of the two
mates (on the two different chromosomes) would be forward-forward or reverse-reverse, while the
latter will show the regular forward-reverse direction.

Thus the detection and post-processing for both an inverted and a non-inverted translocation is
identical up to the very end, when the direction of reads in the translocation cluster determines
the difference in calls. Determination of size and boundaries in both cases is identical.

Intra-chromosomal Translocation

Intra-chromosomal translocations are the most complex of the SVs to identify. They manifest
in the form of a single intra-chromosomal translocation cluster typically flanked by two deletion
clusters. If the size of the translocated region, or its shift is small, insertion clusters could also
appear beside the translocation cluster.
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Figure 5.21: Boundary determination for small insertions
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Figure 5.22: Boundary determination for intra-chromosomal translocation

Avadis NGS must identify three points to entirely describe an intra-chromosomal translocation,
namely, the boundaries of the region that got detached and the point at which it got inserted.
Let us denote the insertion point by X, the boundary point further away from X by Z, and the
boundary point near X by Y .

In the absence of insertion clusters: This case is illustrated in Figure 5.22. X and Z can be
estimated from the end points of the translocation cluster, as well as from one end point each, of
the predictive SV regions of the deletion clusters. The other end point of the predictive SV regions
of the two deletion clusters indicates the position of Y . An additional check for Y is that it must
lie within the predictive SV region of the translocation cluster.

In the presence of 1 insertion cluster, at end Z: This case is illustrated in Figure 5.23. X
can be estimated from one end point of the translocation cluster and one end point of one deletion
cluster (at the end where the insertion cluster is absent), as well as from one end of the predictive
SV region of the other deletion cluster. Z can be estimated from the predictive region of the
insertion cluster. Additionally, it must lie between one end of the translocation cluster and one
end of the predictive SV region of the one deletion cluster (at the end where the insertion cluster
is present).

One end point each of the predictive SV regions of the two deletion clusters indicates the position
of Y . An additional check for Y is that it lies at one end point of the predictive SV region of the
translocation cluster.

In the presence of 2 insertion clusters: This case is illustrated in Figure 5.24. X and Z can
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Figure 5.23: Boundary determination for intra-chromosomal translocation: Small shift
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Figure 5.24: Boundary determination for intra-chromosomal translocation: Small region, small
shift
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Figure 5.25: Boundary determination for intra-chromosomal translocation

be estimated from one end point each of the deletion cluster, as well as from the predictive SV
regions of the two insertion clusters. One end point each of the predictive SV regions of the two
deletion clusters indicates the position of Y . An additional check for Y is that it must lie within
the predictive SV region of the translocation cluster.

In all cases, the EIDs of the various clusters also provide good estimates as to the translocated
regions.

Intra-chromosomal Inverted Translocation

Inverted intra-chromosomal translocations manifest in the form of a single inversion cluster typically
accompanied by a deletion cluster. If the size of the translocated region is small, a single insertion
cluster would also be present.

As for intra-chromosomal translocation, three points describe an inverted intra-chromosomal
translocation, namely, Y and Z, the boundaries of the region that got detached and inverted, and
the point X at which it got inserted.

In the absence of insertion clusters: This case is illustrated in Figure 5.25. The boundary Y
of the translocated region can be estimated from one end point of the predictive SV region of the
deletion cluster. The end points of the predictive SV region of the inversion cluster give the points
X and Z.

The EID of the deletion cluster also gives an estimate of the size of the inverted translocated
region.
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Figure 5.26: Boundary determination for intra-chromosomal translocation: Small shift

In the presence of 1 insertion cluster, at end Z: This case is illustrated in Figure 5.26. X
can be estimated from the predictive SV region of the insertion cluster. Z can be estimated from
one end of the predictive region of the inversion cluster. One end point of the predictive SV regions
of the deletion cluster indicates the position of Y .

5.3.3.2 Zygosity Call for SVs

Avadis NGS decides between heterozygosity and homozygosity based on the relative proportion
of deviant reads, specifically, the ratio of deviant reads supporting the corresponding SV to that of
all the other reads present in the region. One thing to be noted here is that the reads participating
in the computation of this ratio are only the first mates of the paired reads. The second mates do
not feature in the ratio. If this ratio exceeds a threshold rTh, a homozygous call is made; else the
variant is deemed heterozygous. This threshold rTh is set to 0.65, and is the same for all types of
SVs. But the region which is taken into consideration, and the types of reads which participate
in the zygosity call change across different types of SVs. These differences are explained in the
following subsections.

This approach holds throughout with the one exception being detection of indels via the k-BIC
algorithm.

Deletion
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� Deviant reads supporting the SV: ‘Mate far’ reads supporting the deletion

� Reads supporting the heterozygous nature of the SV: All reads in the region other than the
deviant reads supporting the SV. Even ‘mate fars’ not supporting the SV are considered here,
as there might be two heterozygous deletions in the same region.

� Region from which the reads are taken: (start of the deletion region - mean insert length of
the sample, start of the deletion region)

The reason for conisdering this region is that it is within this region that if the SV was
homozygous all the reads would have gone across to the other side of the deletion. Thus in
case of an ideal homozygous condition, the ratio would have been 1. There will also be reads
present outside this region which participate in the SV, but their number would be far lesser
and since we are taking the ratio it is unlikely to affect the final zygosity call.

Large Insertion

� Deviant reads supporting SV: ‘Mate missing’ reads supporting the large insertion

� Reads supporting the heterozygous nature of the SV: All reads in the region other than the
deviant reads supporting the SV, except ‘mate nears’ that might also be present supporting
the same SV. This might happen when the insert length is close to the actual insertion
sequence size in the sample.

� Region from which the reads are taken: (start of the large insertion region - mean insert
length of the sample, start of the large insertion region)

The reasoning behind considering this region is same as that in the case of deletion.

Insertion

� Deviant reads supporting SV: ‘Mate near’ reads supporting the insertion

� Reads supporting the heterozygous nature of the SV: All reads in the region other than the
deviant reads supporting the SV, except ‘mate missings’, as they might be supporting the
same SV. This is because in any kind of insertion there will always be some ‘mate missing’
reads present which support the that insertion. This phenomenon happens as the mates of
those reads fall within the insertion region in the sample, and when they are mapped back
to the reference, these mates are not able to align to the reference thus resulting in mate
missing reads.

� Region from which the reads are taken: Bigger of the following two regions, R1: (start of
the first read supporting the insertion + 2 times standard deviation, start of the insertion
region), R2: (start of the insertion region - average read length, start of the insertion region).

In this case all the supporting reads lie in the region from the start of the first read supporting
the insertion to the start of the insertion region. Now very few deviant reads will lie between
the ‘start of this region’ and ‘two times standard deviation of the insert length from the
start’, because of the gaussian nature of the insert length. Thus the reads considered for the
ratio are taken from the end of the this region to the start of the insertion region. This is R1
mentioned above. In cases where the insertion size is very close to the insert length of the
reads, and the starndard deviation is more than the read length, the size of the region R1
might become very small and in some cases might even become negative. To circumvent this
problem, the second region R2 also is considered whose size will never be close to zero.

Inversion

� Deviant reads supporting SV: ‘One mate flip’ reads supporting the inversion
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� Reads supporting the heterozygous nature of the SV: All reads in the region other than the
deviant reads supporting the SV, except ‘mate far’ reads indicating deletions because in case
of inverted intra-chromosomal translocation mate far reads are produced as a side-effect of it.
At the time of the detection of inversion the algorithm is not able to differentiate between
inverted intra-chromosomal translocation and normal inversion and hence the mate far reads
are not considered for the zygosity calculation.

� Region from which the reads are taken: Bigger of the following two regions, R1: (start of the
first forward read + two times standard deviation, start of the last forward read), R2: (start
of the last forward read - average read length, start of the last forward read).

The reasoning behind considering this region is the same as that of the case of insertion. One
thing to be noted though is that here the second region comes into effect when the size of the
inversion is smaller than two times the standard deviation of the insert length of the sample.

Intra-chromosomal translocation

� Deviant reads supporting the SV: ‘Both mate flip’ reads supporting the intra-chromosomal
tranlocation

� Reads supporting the heterozygous nature of the SV: All reads in the region other than
the deviant reads supporting the SV, except reads indicating INDELs. This is because
translocations always produce ‘mate far’ and ‘mate near’ reads as a side-effect, and considering
them in the calculation would not be appropriate.

� Region from which the reads are taken: Bigger of the following two regions, R1: (start
of the first read indicating translocation, start of the first read indicating translocation +
average read length), R2: (start of the first read indicating translocation, start of the last
read indicating translocation - two times the standard deviation).

Inter-chromosomal translocation

� Deviant reads supporting the SV: ‘Translocated’ reads supporting the translocation

� Reads supporting the heterozygous nature of the SV: All reads in the region other than
the deviant reads supporting the SV, except INDEL reads as they can be produced as a
side-effect of the translocation itself.

� Region from which the reads are taken: Bigger of the following two regions, R1: (start of
the first forward read supporting the translocation + two times standard deviation, start
of the last forward read supporting the translocation), R2: (start of the last forward read
supporting the translocation - average read length, start of the last forward read supporting
the translocation)

Inverted Intra-chromosomal translocation

For this case the zygosity calculation has already been made during the inversion call and it is not
calculated separately once again.

Inverted Inter-chromosomal translocation

Here the call is made similar to the case of inter-chromosmomal translocation.

5.3.4 k-BIC

See Appendix A for a description of k-BIC.
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Span Cluster size
coverage⇓ 2 3 4 5 6 7 8 9 10 11 12
5x 3.5 3.1 3.0 2.7 2.4 2.3 2.1 2.1* 2.1* 2.1* 2.1*
8x 3.6 3.2 3.0 3.0 2.6 2.5 2.4 2.3 2.2 2.2* 2.2*
10x 3.9 3.2 3.0 2.8 2.7 2.6 2.5 2.3 2.2 2.1 2.1*
15x N/A 3.8 3.4 3.1 2.8 2.6 2.5 2.4 2.4 2.4 2.3
20x N/A N/A 3.4 3.1 2.8 2.7 2.7 2.5 2.5 2.5 2.4
25x N/A N/A N/A 3.4 3.1 2.9 2.8 2.6 2.6 2.5 2.4

Table 5.5: Cutoffs used for given cluster size at given span-coverage

5.3.5 PEMer Algorithm

PEMer (Paired-End Mapper) (Korbel et al. [21]) is an algorithm for detecting structural variants
of large insert lengths using paired-end sequencing data. The following are the details:

1. Pre-processing: Let the mean library insert length be µ. Let the standard deviation of
original library insert lengths be σ. If these quantities are given by the user, then they are
used for subsequent calculations. If these are not given, then these quantities are estimated
from the data, as explained in Sections 5.3.1.1 and 5.3.1.2 respectively.. In either case, these
quantities are respectively denoted by µ̂ and σ̂, For subsequent analysis these estimates are
used.

2. Read-alignment: Find all the paired reads that overlap a particular point in the reference.
These points are the start of all the reads.

3. Selection of read-pairs: Select read-pairs having normal orientation. Discard those which
do not have normal orientation.

4. Identification of deviant read-pairs: Find the deviant read pairs based on Table 5.5,
which gives cut-off values C. Only those reads with insert lengths greater than (mean +
C× the standard deviation), are used for subsequent analyses. This table is adapted from
Korbel et al. ([21]) and gives cutoff values for defining deviant read-pairs given in terms of
standard deviations (SDs) from the median (we have used mean instead of median) of the
expected distribution of insert lengths. For cells marked N/A no cutoffs were reported as the
number of observed false-positive calls was extensive. Numbers marked with an * correspond
to blank cells in [21] which concern paired-ends with a span deviating from the mean insert
size by less than two standard deviations and are not considered in their work. However, in
our algorithm, we have used the last value without an * in that span coverage row.

5. Clustering of deviant read-pairs: Run the clustering algorithm explained earlier in
Section 5.3.2 on all the reads obtained in (2) above. Remove clusters which contain less than
a user-specified number d of deviant read-pairs.

6. SV type identification: Tag each of the remaining clusters as an insertion cluster or a
deletion cluster based on the average inter-mate distance of the cluster---a short one if it is
less than µ̂− 2σ̂ and a long one if it is greater than µ̂+ 2σ̂. Discard those that are neither
short nor long.

7. Merging clusters: Consider the possibility of merging clusters by applying the method
described in Section 5.3.2. Consider the cluster with the largest number of reads as the SV
cluster.

8. Detection of SV region: Detect the SV region as explained in Section 5.3.2.
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This approach can detect INDELs of insert length greater than 2σ, since we are discarding those
with shorter insert length.



Chapter 6

Copy Number Analysis

6.1 Background and Motivation

Copy number variations (CNVs) are a form of structural variations (SVs) and are defined as large
scale amplifications or deletions (typically larger than 1 kbp). Contrary to the earlier belief, CNVs
are present in human populations with high frequency and potentially explain more variation than
SNPs [41]. In particular, often there are large scale variations with possible deletions of tumor
suppressor genes and/or amplifications of oncogenes, in the cancer genome. An example karyotype
that is shown in Fig. 6.1 clearly reflects genome-wide large scale changes in cancer.

Figure 6.1: Example karyotype showing large scale variations in the cancer genome.

Many studies have already shown the association of CNVs to complex diseases such as cancer,
Alzheimer, Autism, etc [42, 43, 44, 45]. Therefore detection and understanding of the implications
of CNVs become critical for diagnosis and treatment of various genetic diseases.

Traditionally, fluorescence in situ hybridisation (FISH), array comparative genomic hybridisation
(aCGH), and SNP arrays are employed to detect CNV regions but they have their own set of issues
and it is generally difficult to detect short CNV regions as the resolution is low, particularly for
FISH and aCGH technology [46]. But the recent progress in next generation sequencing (NGS)
has enabled us to detect copy number variations (CNVs) at an unprecedented resolution. In this
chapter we describe the approach used in Avadis NGS for detecting CNVs using the NGS data.
The primary objective of this analysis is to detect the CNV regions in individual samples (CNVs in
tumor genome for example, with respect to the normal genome) and assign absolute copy number
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to each region.

However, several technical and biological challenges inhibit the detection of true CNV regions and
assignment of absolute copy numbers. These include:

� Noise/random errors in the data

� Technical bias of the NGS technology due to which the number of reads may not truly
indicate DNA content

� Aneuploidy of tumor cells (tumor genomes are often not diploid)

� Tumor sample contamination by normal and stromal cells

� Heterogeneity in tumor cells i.e. there may be polyclonal tumors within a tumor with each
clone having different variations and therefore different CNV regions

6.2 CNV detection approach

In this section, we will describe our approach for the detection of CNV regions while addressing
some of the issues mentioned above. Most of the approaches for detecting CNVs using NGS data
are based on 1) read depth or depth of coverage; 2) distance/orientation of read pairs; and 3)
split reads. Since depth of coverage based methods are more commonly employed to detect CNV
regions, we have also adopted a similar approach.

In Avadis NGS , CNV Detection can be run on whole genome data as well as on targeted
reseqeuncing data. In case of whole genome data, the genome is divided into small windows, and
read counts in tumor and normal samples are obtained for each of these windows. These read
counts are normalized for GC-bias and the respective total sample read counts, and the read count
ratios between the tumor and the normal samples are computed. The normalized ratios are then
corrected for ploidy and normal cell contamination of the tumor sample. Finally, segmentation is
done to detect the CNV regions - in this process adjacent windows are merged if they have similar
ratios.

Note: In case of targeted resequencing data, the ratios are computed for each target region without
further subdividing. Also, segmentation is not performed.

The details of the main processing steps are given below:

6.2.1 Determining window size

The ‘depth of coverage’ based methods choose non-overlapping windows or bins representing
non-overlapping genomic regions and count the number of reads in each window. The ‘window
size’ is an important factor that determines the length of the shortest CNV region that can be
detected. A smaller window size may allow detection of shorter CNVs as well, however, a very
small-sized window may be affected by noise and may not have enough reads to generate a robust
signal. So, a balance is necessary while determining the window size. A minimum of the two
window sizes (computed and user-provided), as defined below, is eventually used. We used the
following equation to compute the window size [47]:

wcomputed =
L

T ∗ CV 2
(6.1)

Here L is the total length of the genomic region considered, T is the total number of reads, CV is
the coefficient of variation. Recommended range of values for this parameter is 0.05− 0.10.
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User-provided window size is given by the following equation:

wuser =
‘Min CNV Length’

k
(6.2)

Here the parameters ‘Min CNV Length’, and k, provided by the user, are the length of the shortest
CNV region the user is interested in detecting (specified in the wizard), and the minimum segment
size (specified in Tools Options), respectively.

As mentioned, minimum of the two window sizes is used.

w = min(wcomputed, wuser) (6.3)

Finally, we impose a lower bound of 200bp and an upper bound of 100Kbp on the window size,
w. Also, as we need one window size for both the tumor and the normal samples, we take the
maximum of the two window sizes computed and use it in all the subsequent steps.

6.2.2 Calculating read count for tumor and normal samples

Once we have determined the window size, we count the number of reads that fall in each window.
The reads that span across the window boundary are fractionally counted to the windows, based
on the percentage of overlap.

6.2.3 GC bias correction and count normalization

It is known that GC content can influence the read counts. Typically, read depths are lower for
both high and low GC content, as depicted in Fig. 6.2.

It is important to remove the GC content bias before doing any downstream analysis. There are
generally two ways to do it: 1) Mean/Median based approach; and 2) Regression based approach.
We use a mean based approach [48] that make use of GC content bins and correct the read count
in each window according to the following equation:

Rci = Roi − (mgi −m) (6.4)

Here Roi , and Rci are the original and the GC-bias corrected read counts respectively, for the ith

window. gi is the GC-percent for the ith window. m is the mean of the read counts across all the
windows, and mgi is the mean of the read counts for all the windows with GC-percent gi. This
is quite intuitive and simple to understand. The formula above increases the read counts of the
windows which have either low or high GC content, whereas for windows in which GC content is
neither too high nor too low, the read counts will be decreased.

6.2.4 Calculating tumor-normal ratios

Once we have removed the GC content bias from the read counts in each window for both the
tumor and normal samples, we normalize the counts by the total read count in the respective
sample. This is done because the samples could have been sequenced at different depths and
therefore have different average read coverage. We then compute, for each window, the ratio of
the normalized corrected read count in the tumor to that in the normal sample. Although this
ratio would only make more sense when both the tumor and the normal sample genomes have the
same size (or same average ploidy), which in fact is not the case since tumor genomes are often
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Figure 6.2: An example showing GC bias - Y-axis represent the read depth and X-axis represent
the GC content.

aneuploid, this normalization is still a good approximation of the ratio signal, especially when we
eventually correct for the average sample ploidy (more on this in the next section).

ratio(ri) =
Ri,t/Tt
Ri,n/Tn

(6.5)

Here [Ri,t, Tt], and [Ri,n, Tn] denote the [read count in ith window, total read count] for tumor
and normal samples respectively. ri denotes the tumor-normal ratio for the ith window.

If there were no aneuploidy and no normal cell contamination in the tumor sample, the tumor-
normal ratios would take values from the set R : {0, 0.5, 1.0, 1.5, 2.0, ..., and so on}, corresponding
to tumor copy numbers CN : {0, 1, 2, 3, 4, ..., and so on}. However, in practice due to aneuploidy
of tumor cells and normal cell contamination, ratios deviate from the set R [49]. As a result, copy
number (CN) can also deviate from the integer values shown in set CN . There is typically an
interplay between average ploidy and contamination (will be explored in the next section), but
generally speaking, contamination in the tumor sample moves all the ratios towards 1 (with 50%
contamination, a 4X amplification may look like a 3X amplification; or a 0X deletion may look
like a 1X deletion); and ploidy scales all the ratios in either upward direction (when average sample
ploidy is less than 2) or in downward direction (when average sample ploidy is more than 2).

Note: We assign a ‘NaN’ value to the ratio for windows in which Ri,n is less than a specified
threshold. This is done to avoid non-robust and erroneous ratio values. Further, we use lower and
upper bounds on the calculated tumor-normal ratios - all the ratios greater than 10.0 are clamped
to 10.0 and on the lower side they are bounded by 1.0× 10−10.
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6.2.5 Effect of aneuploidy and normal cell contamination

Aneuploidy shifts the copy number ratio signal in the downward direction if the average tumor
sample ploidy is more than 2. Similarly, it shifts the signal in the upward direction if the average
tumor sample ploidy is less than 2. The observed copy number ratio signal is given by:

robservedi =
2

P
ractuali , (6.6)

where P is the average ploidy of the tumor sample, ractuali is the actual tumor-normal ratio, and
robservedi is the observed ratio. Since the overall signal is scaled in either upward or downward
direction, aneuploidy alone does not make the process of segmentation difficult, however accurate
assignment of copy numbers to each segment becomes more difficult.

Normal cell contamination shifts the ratio towards the normal ratio, which is 1. Due to this,
contrast between adjacent copy number states will reduce and therefore both segmentation and
assignment of copy numbers become difficult. Assuming C to be the fraction of normal cells in the
tumor sample, observed ratio can be written as:

robservedi = (1− C) ∗ ractuali + C ∗ 1 (6.7)

Combined effect of aneuploidy and normal cell contamination is given by:

robservedi =
2

P

[
(1− C) ∗ ractuali

]
+ C ∗ 1 (6.8)

6.2.6 Estimation of average sample ploidy and normal cell contamina-
tion

As mentioned earlier, tumor samples often exhibit aneuploidy and are contaminated by normal and
stromal cells. Both these sample-specific biological parameters affect the ratio signal (shrinking
towards 1 or scaling or both) and therefore affect the accuracy by which one can detect CNV
regions and assign copy numbers. Tumor-normal ratios typically show multi-modal distribution
depicting different copy number states. We use the Gaussian mixture model to model this data
[49]. However, in case of contamination or aneuploidy, the challenge is that separation in the
modes would become smaller as they all shrink towards ratio 1. The interplay amongst sample
ploidy, normal cell contamination, and the distance between adjacent Gaussian components is
given by the following equation:

C = 1− d ∗ P (6.9)

where C is the normal cell contamination (given as a fraction between 0 and 1), P is the average
sample ploidy, d is the distance between adjacent Gaussian components in the mixture model.
This can be easily derived from Eqn. 6.8 by computing d as the difference between the observed
ratios corresponding to two adjacent copy number states.

In fitting a Gaussian mixture model, one needs to estimate the number of components, mean and
standard deviation of each component, and mixing proportions (weights) of the components. We
do that using the standard EM algorithm. We use an important fact to reduce the search space
in the EM algorithm: for any given value of ploidy and contamination, the ratios corresponding
to adjacent copy number states lie a fixed distance apart. To illustrate further, let us assume
there are three modes in the ratio distribution: first corresponds to deletion (CN = 1), second
corresponds to normal region (CN = 2), and third corresponds to amplification (CN = 3). If
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average sample ploidy is 2 and the sample has no contamination, then d = 0.5, which means if
Gaussian component corresponding to CN = 2 is at 1.0, CN = 1 will be at 0.5, CN = 3 will be
at 1.5 and so on. Keeping the ploidy same at 2, if we have a 20% contamination, then d = 0.4
which will change the position of all the Gaussian components by the same amount. Similarly for
40% contamination, we get d = 0.30. Note that if average sample ploidy is more than 2, d will
decrease further. In summary, no matter what the value of d is, it is constant between the peaks
for a given set of ploidy and contamination values. From equation 6.9 above, we get minimum
value of ‘d’ when C and P are maximum. In a nutshell, we can fix few values of ‘d’ and therefore
Gaussian component means and use the EM algorithm to update other unknown parameters in
each iteration. Theoretically, one could consider a full range of contamination (0% - 100%) and a
larger range of ploidy, however, at higher contamination and higher ploidy, it become practically
very difficult to segregate the multiple modes (or copy number states) in the data. Therefore,
we limit the values of detectable contamination and ploidy to 40% and 3 respectively. This boils
down to a value of d = 0.20, and this is the minimum distance between the adjacent Gaussian
components that we consider in our approach while modelling the ratio data.

Steps in model fitting: As explained above, we follow a fixed mean Gaussian mixture modelling
approach by first anchoring at the highest ratio peak and then placing a series of components
on either side with uniform spacing. To do this, we bin the ratio data and set the anchor at the
bin with highest density. Then for each d ∈ {0.20, 0.21, 0.22, ..., 0.60}, we fit a Gaussian mixture
model and using the EM algorithm, estimate the variance and mixture weight of each component.
Number of Gaussian components are determined by anchor point and ‘d′ itself. Once we have fitted
the Gaussian mixture models with this fixed mean approach for all values of d, we can compute
BIC (Bayesian Information Criterion) to select the best model. All the Gaussian components that
have estimated mixture weight of less than 0.1% are discarded as noise, and are ignored while
computing the BIC. The BIC criterion is very similar to popular AIC (Akaike’s Information
Criterion), but has a larger penalty term. These model selection approaches become very useful
because it is often possible to increase the likelihood of the data by adding more parameters to
the model but doing so may result in over fitting. This is when AIC and BIC criteria try to
strike a balance. We experimentally evaluated both AIC and BIC and found BIC criterion to
be more suitable for this problem. Once the best Gaussian mixture model is determined and the
corresponding value of d is available, we use Eqn. 6.9 and follow the steps below to estimate the
contamination and ploidy.

� Case 1: User has not provided the expected values of either contamination or ploidy - In this
case we assume that CN = 2 is the most predominant copy number state. So we assign a
copy number of 2 to the component with the highest weight, and assign the copy numbers
to the components on either side accordingly. We then compute the average ploidy as the
weighted average of the copy numbers assigned to the various components, as given in the
following equation:

Pestimated =
∑

wi ∗ ci, (6.10)

where wi, and ci are the weight and the assigned copy number of the ith Gaussian component.
Once ploidy P is estimated, we can use Eqn. 6.9 to estimate the normal cell contamination
C.

� Case 2: User has provided the expected value of contamination but not of ploidy - In this
case, we use a different approach for assigning copy number values to the estimated Gaussian
components. After discarding the components with mixture weight less than 0.1%, the first
component (minimum mean) is considered for copy number value of 0, 1, or 2. For each of
these possibilities we assign copy numbers to other components, and estimate the ploidy and
contamination as in Case 1. This way, we get 3 values of the contamination, out of which
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we choose the one that is closest to the expected contamination provided by the user. The
corresponding ploidy is chosen as well.

� Case 3: User has provided the expected value of ploidy but not contamination - The approach
followed in this case is similar to the one followed in Case 2 above. Amongst the 3 possible
ploidy estimates, we choose the one which is closest to the expected ploidy provided by the
user. Again, once we have the final estimate of Ploidy P , we use Eqn. 6.9 to estimate the
contamination C.

6.2.7 Correcting ratio track

Now that we have estimated the average sample ploidy (P ) and normal cell contamination (C),
we can correct the observed ratios to obtain the estimates for the actual ratios before doing the
segmentation. Solving the equation 6.8, we get

ractuali =

(
robservedi − C

1− C

)
P

2
, (6.11)

where C, and P are the normal cell contamination and the average ploidy of the tumor sample
estimated as described in the previous section.

6.2.8 Segmentation

After we have corrected the tumor-normal ratios using estimated ploidy and normal cell contami-
nation, we can use any simple segmentation approach to detect CNV regions and assign absolute
copy numbers to the detected regions. For this purpose, we use a moving average based approach.
The steps are described below:

� Iterate over the windows until some non-normal window is found. A tolerance factor of 0.3
is used to classify windows as normal or non-normal. For example, all windows with ratio
value between 0.7− 1.3 are considered normal (CN = 2); windows with ratio value between
1.2− 1.8 are considered to have a CN of 3 and so on. There is an overlap region in these
ranges. So, if the window has a ratio value of 1.25, it can either be considered as normal
with CN = 2, or as non-normal with CN = 3, depending on the context.

� Starting at a non-normal window, we evaluate the ‘genomic segment’ corresponding to k
windows at a time (k is the minimum segment size specified in Tools Options) and compute
the tumor-normal ratio of the region. Please note we do not take the average of already
computed window ratios. Instead, we sum the (GC-bias corrected) reads in k windows
separately for tumor and normal samples, normalize them using total read count in respective
sample, and use these sums to compute the ratio. This way we get more robust estimates as
compared to taking the mean of the ratios across the windows.

� We then shift the ‘genomic segment’ (which consists of k windows) by one window at a time
and we keep going as long as the ratio of the ‘moving segment’ corresponds to the copy
number of the first segment. If it differs, we stop.

� Finally, we backtrack and discard individual windows that by themselves have ratio value
outside the tolerance band.

Merging of regions: Once all the CNV regions are detected using the above moving average
based method, we merge adjacent regions based on two criteria: 1) gap between the regions; and
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2) difference in copy number values between the two regions. Both of the following two conditions
should be satisfied before the CNV regions are merged:

gap

Total size of merged region
≤ a%

‘Total size of merged region’ is calculated from start of the first region up to end of the second
region, and the default value of a in the tool is 10%.

CN1 − CN2

(CN1 + CN2)/2
≤ b%

Default value of b is 20%. Due to the second condition, there is a higher tendency to merge regions
with larger copy numbers compared to smaller copy numbers. For example, let us consider two sets
of two regions each that are candidates for merging. The two regions in the first set have CN = 3
& CN = 4; and in the second set have CN = 6 & CN = 7. Let us also assume that regions in
both sets satisfy the gap criterion. However, second condition will only be satisfied for the second
set and not the first set. Due to precisely this reason, second criteria may not be appropriate for
dealing with deletion regions. Therefore, we change the second criteria for deletions to require that
closest assigned integer copy numbers for the two regions considered for merging, should be same.
The first criteria to check gap remains unchanged. Please note that due to aneuploidy and normal
cell contamination, copy number values may not be integer values.

Filtering regions based on minimum CNV length: At the end, before we output the results,
regions whose lengths are less than the ‘Minimum CNV length’ are discarded.
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Appendix A

k-BIC

A.1 Introduction

The k-BIC algorithm is an application of the k-means algorithm to make k clusters from n objects,
for various values of k from k = 1 to k = K, a given number, followed by the application of the
Bayes Information Criterion (BIC) to determine the optimal number of clusters in the range 1 to
K. This algorithm is used to determine the appropriate number of groups in a cluster analysis
situation. In cluster analysis, the aim is to make clusters so that there is homogeneity within
clusters, generally measured by the sum of squared distances of all pairs within a cluster. Given
n observations, the larger the number of groups (k), the more will the homogeneity be; but this
will overfit the cluster model. To guard against this a cluster analysis criterion is modified by
introducing a penalty term to the criterion.

The BIC criterion is applied in several contexts in Avadis NGS. For instance in the PICS algorithm
the likelihood criterion is modified by the BIC criterion. In Structural Variation detection where
the appropriate number of clusters are determined, the sum of squares of distances criterion is
offset by a penalty term as per the BIC criterion.

In what follows, we discuss the details of this approach.

A.2 k-means Algorithm

The k-means algorithm is a method of forming k disjoint clusters of n data points for a chosen
number k. A measure of distance between points (metric) relevant to the nature of the data points
is chosen and the object of the algorithm is to form k groups in such a way that each observation
is assigned to the cluster with the nearest (in the sense of the chosen metric) mean. The criterion
for forming clusters is the minimization of the sum of squares of distances (again, in the sense
of the chosen metric) between pairs of points within clusters, summed over clusters. From the
clusters finally arrived at, parameters such as cluster proportions, cluster means, etc. are estimated,
if required.

Details of the k-means Algorithm

1. Choose k data points as initial centroids either based on heuristics or at random.

2. Repeat steps 3 to 5 below until the stopping/convergence criterion stated below is met.

3. For each data point xi:
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(a) compute the distance of xi to each (current) centroid.

(b) identify xi with the closest centroid.

4. Form k clusters based on the above assignments.

5. Recompute new cluster centroids as means of the data points assigned to that cluster.

The stopping/convergence criteria generally used are:

1. Minimum number of re-assignments of data points to different clusters between successive
iterations.

2. Minimum number of changes of centroids between successive iterations.

3. Minimum decrease in the within-cluster sum of squares of distances---sum of squares of
distances between all pairs of data points within a cluster, summed up over all clusters (SSE).

A.3 Model and Likelihood

The above method is not based on any model for the data. But subsequent analysis in Structural
Variation application is based on the univariate normal mixture model as follows. A similar
approach is valid for multivariate normal and other mixtures. A normal mixture model for a
univariate random variable X describes the probability density of X as

f(x; Θ) =

k∑
j=1

pjφ(x;µj , σj), (A.1)

where Θ = (µ1, µ2, . . . , µk;σ1, σ2, . . . , σk; p1, p2, . . . , pk) with

k∑
j=1

pj = 1; φ(x;µ, σ) is the probability

density of the normal distribution with mean µ and standard deviation σ. Here we assume that σj
are all equal and equal to σ.

Let xi, i = 1, 2, . . . , n be the observations, assumed to be a random sample from f(x; Θ) in (A.1).
The likelihood based on the mixture density (A.1) is

n∏
i=1

f(xi; Θ) =

n∏
i=1

k∑
j=1

pjφ(x;µi, σ), (A.2)

Upon convergence of the k-means algorithm, parameter estimates are computed as follows: Let nj
be the number of data points in the jth cluster, j = 1, 2, . . . , k.
Let xij be the data points in cluster j, i = 1, 2, . . . , nj , j = 1, 2, . . . , k.

� p̂j =
nj
n .

� µ̂j = x̄j = 1
nj

nj∑
i=1

xij .

� σ̂2 = 1
n−k

k∑
j=1

nj∑
i=1

(xij − x̄j)2.
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Let
Θ̂ = (µ̂1, µ̂2, . . . , µ̂k; σ̂, p̂1, p̂2, . . . , p̂k)

denote the estimates of the parameters obtained as above. Then the observed likelihood is

LO =

n∏
i=1

f(xi; Θ̂) =

n∏
i=1

k∑
j=1

p̂jφ(xi; µ̂j , σ̂), (A.3)

The algorithm is implemented for a range of values of k, and the best model (optimal value of k)
is selected using a criterion discussed below.

A.4 Model Selection Criteria

Model building and model comparison criteria are based on the principle of parsimony, whereby
one wishes to develop a model with as few parameters as possible, at the same time fitting the
data reasonably well. Thus one aims a trade-off between a good fit and the number of parameters.
This is the well-known problem of bias vs variance. In our particular example, by increasing the
number of clusters and hence the number of parameters, the model can be made to fit very well,
with the likelihood increasing with the number of clusters and number of parameters. However, a
model with a good fit with a large number of parameters does not necessarily generalize due to
biases introduced by over-fit. Hence one adjusts the likelihood (or equivalently log-likelihood) by a
penalty term. Many of the often-used such penalized likelihood criteria are obtained using concepts
and methods of information theory. They are called information criteria (IC). The general form of
these criteria for p parameters is:

IC(n, p) = −2 log(likelihood)(x|θ̂p) + α(n, p),

where x represents the observations and θ̂p represents the maximum likelihood estimates of the p
parameters, and α(n, p) represents the penalty function, a function which increases with n and p.
Model choices (choice of p) are generally made such that IC(n, p) is minimized. Of course, n is
taken as given.

The most well-known and often-used criteria are Akaike Information Criterion (AIC) ([1])
and Schwarz’s Bayesian Information Criterion (BIC) ([27]). AIC uses

α(n, p) = α(p) = AIC(p) = 2p,

and is based on its asymptotic (with respect to n) behavior and has been often found to under-
penalize the log-likelihood and consequently overparameterize the model.. The BIC criterion
depends also on the sample size n. It has been derived from two different points of view. One
of them, by Schwarz ([27]), is based on Bayesian considerations and the predictive power of the
model; however, the criterion turns out to be independent of the prior. The other derivation of the
same criterion is by the use of a coding technique for parameterized density using the notion of
minimum description length(MDL) by Rissanen ([26]). The criterion is

α(n, p) = BIC(n, p) = p log n,

where n is the number of observations. Many other forms have been suggested in the literature (for
instance, Olivier et al. ([25]) for the penalty term in the form c(n)α(p) with various functions c(n)
and α(p), especially for c(n) growing at different rates with n like log n, log log n, and functions
with growth rates in-between. We found the BIC to yield most satisfactory results.

In our problem the number of parameters is p = 2k, where k is the number of clusters; the
parameters are the k normal means µj , j = 1, 2, . . . , k, the k − 1 proportions pj , j = 1, 2, . . . , k
(since the k proportions add up to 1), and the common standard deviation σ.
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A.5 BIC (Bayes Information Criterion) Algorithm

1. Choose an integer K.

2. For each value of k = 2, 3, . . . ,K, compute the following:

3. Compute k clusters using the k-means algorithm:

4. Let xij , j = 1, 2, . . . , ni, i = 1, 2, . . . , k, (with

k∑
i=1

ni = n) be the n insert lengths rearranged

with xij being the elements in the ith cluster.

5. Compute means x̄1, x̄2, . . . , x̄k in the k clusters. x̄i = 1
ni

ni∑
j=1

xij .

6. Compute pi = ni
n , i = 1, 2, . . . , k, the proportions of elements in the k clusters.

7. Compute a common standard deviation s where

s2 =
1

n− k

k∑
i=1

ni∑
j=1

(xij − x̄i)2.

8. Let fi(x; x̄i, s) denote the density at x of a normal (Gaussian) distribution with mean x̄i and
standard deviation s.
Compute log-likelihood as

`(k) =

n∑
m=1

log[

k∑
i=1

pifi(xm; x̄i, s)].

9. Compute BIC(k) as
BIC(k) = −2`+ 2k log(n).

10. The optimal number of clusters is given by

k̂ = arg min BIC(k).

11. Equivalently compute BIC(k) as

BIC(k) = 2`− 2k log(n).

and the optimal number of clusters is given by

k̂ = arg max BIC(k).

12. Output k̂ as the number of components in the mixture.
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EM Algorithm

B.1 Introduction

In many features of Avadis NGS, the Expectation--Maximization algorithm (EM Algorithm)
is being used to compute maximum likelihood estimates (MLEs) of parameters involved in the
model. These features include PICS, GADEM, and isoform quantification. In all these features,
the basic problem is one of resolving a mixture of distributions, which is one of the most significant
applications of the EM algorithm. In this Appendix we give an introduction to the basic ideas of
the EM algorithm, followed by a description of the algorithm as it applies to the mixture resolution
problem. In individual chapters describing the features or in appendices to these chapters, more
details of the algorithm specific to the feature are given.

B.2 Incomplete- and Complete-Data Problems

The EM algorithm is a general-purpose technique for computing MLEs when the likelihood function
is complicated due to

1. the nature of the statistical model from which the data arise such as mixture of distributions,
truncated distributions, and the like;

2. such data-related complications as missing data, latent data, censored data, and the like;

3. both of the above;

4. other reasons.

For convenience, these problems are dubbed incomplete-data problems, even if there is no
data missing in terms of the experiment or study design; the reason for the terminology is their
connection with complete-data problems as explained below. In such situations, standard
techniques of MLE computation such as Newton-Raphson method or its variant in the form
of Fisher’s scoring method are far too complicated to apply. In many such situations, the EM
algorithm can provide a simpler and more elegant way of computing the MLE.

The EM algorithm relies on the ability of the analyst to find a related complete-data problem, the

1. data model for which contains all the parameters of the incomplete-data problem; and
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2. the sample space of which can be mapped to that of the incomplete-data problem---often
the difference between the sample spaces is caused by missing data or latent data, the
availability of which will make the incomplete-data problem a complete-data problem.

For instance, a cluster analysis problem (an unsupervised learning problem) where the number
of groups is known but the group memberships of data points are unknown, can be regarded
as an incomplete-data problem; a related problem where group memberships of data points are
also known (a supervised learning problem) can be regarded as a corresponding complete-data
problem. Here the latent or missing piece of information is the group to which a data object
belongs. Generally, the parameters involved are estimated in a much-easier way if the latent data
are available.

B.3 E- and M-steps of the EM algorithm

1. In many cases a complete-data problem may be a naturally occurring problem in the context.

2. Anyhow, the complete-data problem should have a MLE which is simpler to compute.

3. Since the logarithm is an increasing function, maximizing the likelihood L(Θ) with respect
to parameters Θ is equivalent to maximizing `(Θ) = log(L(Θ)) with respect to Θ.

4. The EM algorithm is an iterative algorithm where each cycle of the algorithm has two steps,
the E-Step or the expectation Step and the M-Step or the maximization step.

5. The algorithm starts with some arbitrarily, randomly or intelligently chosen initial values of
parameters, say Θ(0), applies the E-Step as explained below.

6. It then carries out the M-Step as explained below.

7. At the end of the M-step, an update Θ(1) is computed,

8. which is put through another cycle of E-and M-steps to produce Θ(2) and so on, until the
sequence converges to a value Θ̂ which will be the MLE of Θ.

Under fairly liberal conditions, the algorithm is known to converge to the MLE of the incomplete-
data problem.

B.3.1 E-step

Given current update Θ(t), the E-step in a sense imputes the missing values, using which a
surrogate for the complete-data log-likeihood is computed. More precisely, the E-step computes
the conditional expected value `(Θ(t)) of the complete-data log-likelihood using Θ(t) given the
actually observed data, the expected value being computed with respect to the distribution of the
missing or latent variables.

B.3.2 M-step

Using this conditional expected value `(Θ(t)) as a surrogate for the complete-data log-likelihood,
and exploiting the simpler MLE computation for the complete-data case, the M-step produces an
update Θ(t+1).
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B.4 Resolution of Normal Mixtures

As an example of the EM algorithm, we discuss a problem of resolution of normal mixtures. A
normal mixture model for a univariate random variable X describes the probability density of X
as

f(x; Θ) =

k∑
j=1

pjφ(x;µj , σj), (B.1)

with known k and where Θ = (µ1, µ2, . . . , µk;σ1, σ2, . . . , σk; p1, p2, . . . , pk) with

k∑
j=1

pj = 1; φ(x;µ, σ)

is the probability density of the normal distribution with mean µ and standard deviation σ. Here
we assume that σj are all equal and equal to σ.

The mixture resolution problem is an unsupervised learning problem of estimating the parameters
Θ from a random sample on X, the mixture variable. It is well known that when the components of
the mixture are normal (Gaussian) then it is, in principle, possible to uniquely resolve the mixture
into its components, including the mixture proportions. There are many standard algorithms for
this kind of mixture resolution when the number of components is known, the most often-used one
being the EM algorithm.

Let xi, i = 1, 2, . . . , n be the observations, assumed to be a random sample from f(x; Θ) in (B.1).
The likelihood based on the mixture density (B.1), that is, the incomplete-data likelihood is

n∏
i=1

f(xi; Θ) =

n∏
i=1

k∑
j=1

pjφ(x;µi, σ), (B.2)

and is rather difficult to maximize with respect to Θ directly.

B.4.1 EM Algorithm

B.4.1.1 Missing Data Variable

We discuss the case where k = 2. The procedure is quite the same for a general known k and even
for a multidimensional variable X.

The incomplete-data likelihood function is

L =

n∏
i=1

f(xi; Θ) =

n∏
i=1

2∑
j=1

pjφ(xi;µj , σ), (B.3)

where φ(xi;µj , σ) is the density at xi of N (µj , σ). This is rather difficult to maximize, since
` = logL is the sum of log of sums.

Notice that p1 + p2 = 1 and so we denote p1 by p and p2 by 1− p.

Let Zi be the variable denoting the group to which a data point xi belongs. Let Zi = 1 if the data
point xi belongs to group 1; else 0. This is the supervisor’s data (group membership data), which
is missing or latent in the mixture resolution incomplete-data problem. Zi is a Bernoulli variable
with Prob(Zi = 1) = p for all i and are independent. Note that E(Zi) = p. If we have complete
data (that is data zi on Zi also), then the data from the two groups are separated and the MLEs
of µ1, µ2 are

µ̂1 = x̄1, µ̂2 = x̄2,
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the respective group means.
The common variance is estimated by

σ̂2 =
1

n1 + n2
[
∑
Zi=1

(xi − x̄1)2 +
∑
Zi=0

(xi − x̄2)2].

p̂ =
1

n

n∑
i=1

zi.

B.4.2 Complete-Data Likelihood

Let us look at the EM algorithm with the complete-data problem mentioned here where Zi is the
missing information of group membership. The complete-data likelihood is

Lc =
n∏
i=1

[pf1(xi)]
zi [(1− p)f2(xi)]

1−zi .

The complete-data log-likelihood is

`c =

n∑
i=1

{[zi log p+ (1− zi) log(1− p)] + [zi log f1(xi) + (1− zi) log f2(xi)].

B.4.3 E-Step for the Mixture Problem

Let us denote the data by x and the parameters p, µ1, µ2, σ collectively by θ.

� The E-Step consists in working out E(`c|x,θ).

� This involves the working out of E(Zi), i = 1, 2, . . . , n.

� Zi depends only on xi not on all x, and so E(Zi|x,θ) = E(Zi|xi,θ).

� Since Zi is a 0-1 variable, E(Zi|xi,θ) = P (Zi = 1|xi,θ) = wi, say.

� This is just the posterior probability of Zi = 1 given data calculated at current iteration
value of the parameters.

� An application of Bayes Theorem on conditional probability gives

w
(t)
i = E(Zi|xi,θ) =

p
(t)
1 f1(xi;µ

(t)
1 , σ(t))

p(t)f1(xi;µ
(t)
1 , σ(t)) + (1− p)(t)f2(xi;µ

(t)
2 , σ(t))

B.4.4 M-Step for the Mixture Problem

� The M-Step is the familiar MLE for the supervised complete-data problem, but with a
difference.

� In the supervised problem Zi’s are either 1 or 0, but in the surrogate log-likelihood E(`c|x,θ),

observation xi belongs to group 1 with probability w
(t)
i and to group 2 with probability

1− w(t)
i at the tth iteration.

� Thus in the M-Step MLE, the observations are involved with these weights.

� The update formulas from iteration t to iteration t+ 1 are given below.

� The EM algorithm then is an application of these E-and M-steps in an iterative procedure
until convergence.
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B.4.5 M-Step Formulas for the Mixture Problem

p(t+1) =

n∑
i=1

w
(t)
i

n

µ
(t+1)
1 =

n∑
i=1

w
(t)
i xi

n∑
i=1

w
(t)
i

µ
(t+1)
2 =

n∑
i=1

(1− w(t)
i )xi

n∑
i=1

(1− w(t)
i )

σ2(t+1)

=
1

n

n∑
i=1

[w
(t)
i (xi − µ(t+1)

1 )2 + (1− w(t)
i )(xi − µ(t+1)

2 )2]

B.4.6 Assignment to Groups

If assignment of each data point to a group or if a new data point x is to be assigned to one of the
two groups, then once the parameter estimates have been computed,

� hard assignment: each data point x can be assigned to that group for which the pjf(xi;µj , σ)
is the largest, p1 = p, p2 = (1− p);

� soft assignment: for each data point a probability distribution over the groups can be
computed;

� both the above assignments can be performed with the output from the last iteration results
of the EM algorithm, using the results of the E-Step.

� the observed likelihood LO can be computed plugging in the MLEs in L for the parameters,
rather `O = logLO, the observed log-likelihood can be computed, which is useful for further
work of model selection, as explained in Appendix A.

B.4.7 General Mixture Resolution Application

The variations of this problem are:

� The number of groups may be > 2;

� The variable may be multidimensional, say d-dimensional.

� The multidimensional analog of this problem is where the d-dimnensional observational
variable X has a multivariate normal distribution with different mean vectors µj , j =
1, 2, . . . , k in the k groups. with covariance matrices Σj or a common covariance matrix Σ.

� More generally the k distributions may belong to a more general family F of distributions
than multivariate normal.

� Only certain families of distributions admit solutions to the mixture resolution problem, the
family of multivariate normal distributions being one such.

� When the family admits a resolution, the approach outlined above will generally work, the
analytical work required being

– the derivation of the conditional expectation involved in the E-step;
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– the derivation of the MLEs of the parameters in the complete-data problem.

� In some problems instead of the likelihood function, penalized likelihood functions are used.

� In Bayesian problems (e.g., the PICS algorithm explained in Appendix 2.3.1, instead of
MLEs, maximum a posteriori probability (MAP) estimates are computed by a very similar
technique.

Like most optimization algorithms, the EM algorithm finds only the local maximum with respect
to the initital values used to start the iteration process. In practise, it is advisable to start the
algorithm at diverse points in the parameter space and locate the maximum of the local maxima
in an effort to find the global maximum.

The convergence criteria to be used is a matter that needs careful attention. The rate of convergence
and the number of ierations needed for convergence of the EM algorithm depends on the difference
between the complete and incomplete problems in terms of the amount of latent or missing
information. It is not easy a priori to specify the number of iterations run for the EM algorithm. It
is generally safer, if one can afford the required computing resources, to choose a fairly large value
for the number of iterations. A better option is to run the algorithm until successive values of each
parameter estimate or successive values of the log-likelihood is reduced by a pre-determined rate.



Appendix C

Read Count Normalization

The quantification step in RNA-Seq and Small RNA analyses experiments computes ‘normalized
counts’ of reads for every gene for each sample from the raw read counts. This process is called
‘Normalization’, and Avadis NGS provides various options to do this normalization. The different
normalization methods and the subsequent baselining operation are explained below.

C.1 Normalization using DESeq Approach

This method is based on the paper ‘Differential expression analysis for sequence count data’ by
Simon Anders and Wolfgang Huber [12]. In this, the normalized counts are computed as described
below. Refer to the paper for complete details.

� Let rij be the raw count of gene gi in sample Sj .

� For each gene gi, calculate the geometric mean of the raw counts of all the samples for that
gene. Let it be mi.

� For each sample Sj , calculate the normalization factor Nj as the median of the values r′ij ,

where r′ij =
rij
mi

. Note that while computing this median, the genes with mi = 0 are ignored.

� Finally compute the normalized counts nij for gene gi in sample Sj as
rij
Nj

.

C.2 Normalization using the TMM approach

This method is based on the paper ‘A scaling normalization method for differential expression
analysis of RNA-seq data’ by Mark Robinson and Alicia Oshlack [13]. Computation of the
normalization factors is quite involved in this approach. Refer to the paper for details of the steps
involved.

C.3 Quantile Normalization

This approach tries to make the distribution of all the samples the same. The following are the
steps involved:

� For every sample, rank of all the entities is calculated.
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� A ‘mean’ array is calculated using the entities of same rank across all the samples, i.e., kth

entry in this array will be the mean of raw counts of entities of rank k in all the samples.

� Then for every sample, normalized count for an entity with rank k is set to the kth entry in
the ‘mean’ array computed above.

C.4 Normalize Total Sample Read Count

Let ti be the total read count for sample Si, and let m be the median of these total read counts
for all the samples. Then the normalized counts for the sample Si are obtained by dividing the
raw counts by ti

m . With this approach, the total sample read count will become the same for all
samples after the normalization.

C.5 Baselining

Baselining essentially subtracts the mean or meadian (as per the option chosen) of the log-
transformed normalized counts of the chosen set of samples (all samples or a subset of samples
chosen as control set) from the log-transformed normalized count of every sample.



Appendix D

Multiple Testing Correction

D.1 Adjusting for Multiple Comparisons

Statistical tests are often carried out simultaneously on entities running into several thousands
and even tens of thousands in number. This leads to the following problem: Suppose there are
m entities. Suppose, for instance, the tests are for differential expression of the entities under a
certain set of conditions, the null hypotheses in each case being no differential expression. Suppose
a p-value for each entity has been computed and all entities with a p-value of less than 0.01 are
considered for rejecting the corresponding null hypothesis. Let k be the number of such entities.
Each of these entities has a less than 1 in 100 chance of appearing to be differentially expressed
by chance if they are not really differentially expressed (that is, if the null hypotheses are true).
However, the chance that at least one of these k entities appears differentially expressed by chance
is much higher than 1 in 100, when none of these entities is differentially expressed. In fact, this
could be as high as 1− (1− 0.01)k approximately equal to k × 0.01 (if the test statistics for these
entities are assumed to be independently distributed). As an analogy, consider fair coin tosses, each
toss producing a head with a probability of 0.5; the chance of getting at least one head in a hundred
tosses is much higher than 0.5; it is about 1− (0.5)100 which is very close to 1. Thus if many tests
are carried out simultaneously each at a level of significance of 0.01, then taking all tests together
the level of significance is no longer 0.01 but much higher. Thus if the overall level of significance
called Family-Wise Error Rate (FWER) is to be controlled, some adjustment or correction for the
level of significance of each test (called Comparison-Wise Error Rate---CWER) is to be made so
that the overall level of significance and hence the proportion of false positives is controlled to a
desired extent. The FWER controls the proportion of hypotheses declared significant among all
the hypotheses that are actually null (false positives).

Another approach taken in this context takes a different point of view. It is the control of False
Discovery Rate (FDR) which is the proportion of hypotheses that are actually null among those
that are declared significant.

Avadis NGS offers the following six types of multiple testing corrections, the first three controlling
Family-Wise Error Rate (FWER). and the remaining three controlling False Discovery Rate (FDR).

1. Bonferroni

2. Bonferroni Step-down (Holm)

3. Westfall-Young

4. Benjamini-Yekutieli
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5. Benjamini-Hochberg

6. Storey q-value

See Dudoit et al. [14] and Glantz [19] for detailed descriptions of various algorithms for adjusting
p-values and Storey [29], [30] for q-value and FDR.

The methods are listed in order of their stringency, with the Bonferroni being the most stringent,
and the Storey q-value being the least stringent. The more stringent a multiple testing correction,
the less proportion of false positive entities results. The trade-off of increasing stringency of a
multiple testing correction is that the rate of false negatives (entities that are called non-significant
when they are significant) increases.

We present below a few examples. In the examples, an error rate of 0.05 and a entity list of 1000
entities are assumed.

D.2 Bonferroni

Bonferroni method is a single step procedure, where each p-value is corrected independently of
others. The p-value of each entity is multiplied by the number of entities in the entity list. If
the corrected p-value is still below the chosen significance level, the entity is declared significant.
Corrected p-value= p-value ×n (number of entities in test). As a consequence, if testing 1000
entities at a time at the same p-value, the highest accepted individual p-value for declaring
significance is 0.00005, making the correction very stringent. With a FWER of 0.05 (i.e., the
probability of at least one error in the family), the expected number of false positives will be 0.05.

D.3 Bonferroni Step-Down

Holm’s test is a stepwise method, also called a sequential rejection method, because it examines
each hypothesis in an ordered sequence, and the decision to accept or reject a null hypothesis
depends on the results of the previous hypothesis tests.

Entities are sorted in increasing order of p-values. The p-value of the jth entity in this order is
now multiplied by (m− j + 1) to get the adjusted p-value. Because it is a little less corrective as
the p-value increases, this correction is less conservative.

Example:
Gene p-value before Rank Correction Is entity significant

Name correction after correction

A 0.00002 1 0.00002× 1000 = 0.02 0.02 < 0.05→ Y es
B 0.00004 2 0.00004× 999 = 0.039 0.039 < 0.05→ Y es
C 0.00009 3 0.00009× 998 = 0.0898 0.0898 > 0.05→ No

D.4 Westfall-Young

The Westfall-Young [32] permutation method takes advantage of the dependence structure between
entities, by permuting data in entities between groups (conditions) in all the entities at the same
time. Suppose the tests are two-sample t-tests with n1, n2 samples in groups (conditions) 1 and 2
respectively. Then the n1 + n2 sample units are permuted by allotting at random n1, n2 of the
units to the two conditions. The same permutation of units will apply to all entities. Thus in all
the entities the data in the two groups will also be permuted likewise. The same test is conducted
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as before in each of the entities. Thus each permutation will give rise to a different set of p-values
for the entities. A similar approach is used for any other test.

The Westfall-Young procedure is a permutation procedure in which entities are first sorted
by increasing t or the statistic used for testing obtained on unpermuted data. Then, for each
permutation, the test statistics obtained for the various entities in this permutation are artificially
adjusted so that the following property holds: if entity i has a higher original test statistic than
entity j, then entity i has a higher adjusted test statistic for this permutation than entity j. The
overall corrected p-value for an entity is now defined as the fraction of permutations in which the
adjusted test statistic exceeds the test statistic computed on the unpermuted data. Finally, an
artificial adjustment is performed on the p-values so that an entity with a higher unpermuted test
statistic has a lower p-value than an entity with a lower unpermuted test statistic; this adjustment
simply increases the p-value of the latter entity, if necessary, to make it equal to the former.
Though not explicitly stated, a similar adjustment is usually performed with all other algorithms
described here as well.

Because of the permutations, the method is very slow.

D.5 Benjamini-Hochberg

This method [8] assumes independence of p-values across entities. However, Benjamini and
Yekuteili showed that the technical condition under which the test holds is that of positive
regression dependency on each test statistics corresponding the true null hypothesis. In particular,
the condition is satisfied by positively correlated normally distributed one sided test statistics and
their studentized t-tests. Furthermore, since up-regulation and down-regulation are about equally
likely to occur, the property of FDR control can be extended to two-sided tests.

This procedure makes use of the ordered p-values p(1) ≤ p(2) . . . ≤ p(m). Denote the corresponding
null hypotheses by H(1), H(2), . . . ,H(m). For a desired FDR level q, the ordered p-value p(i) is

compared to the critical value q. im . Let k = max
p(i)≤q im

i. Then reject H(1), . . . ,H(k), if such a k exists.

Else, do not reject any hypothesis.

D.6 Benjamini-Yekutieli

For more general cases, in which positive dependency conditions do not apply, Benjamini and
Yekutieli [9] showed that replacing q by q

m∑
i=1

(
1

i
)

will provide control of the FDR. This control is

typically applied in GO analysis, since the GO terms have both positive and negative regression
dependency.

D.7 Storey’s q-value

The stepup Benjamini-Hochberg procedure estimates the rejection region so that on average, FDR
< q. Here q is the desired level of significance. Alternatively, Storey considers fixing the critical
region and then estimating the FDR. This FDR for given cut-off is called the q-value.

p-value of 5% means 5% of all (null) tests result in false positives. q-value of 5% means 5% of all
tests declared significant tests result in false positives (truly null). FDR = P(hypothesis i is truly
null | test i is declared significant). The FDR is estimated taking into account the distribution
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of p-values. Let π0 be the prior probability that a hypothesis is true (null). It is assumed that
p-values of null hypotheses are uniformly distributed on (0,1). Overall the p-value distribution is a
mixture of a uniform (0,1) distribution with a proportion π0 and a distribution concentrated over
small values (close to 0) with a proportion 1− π0. The proportion of tests in the significant results
which come from the uniform distribution is the estimate of FDR. Storey’s approach estimates
this proportion using the bootstrap method. Other methods for estimating π0 such as smoothing
methods and mixture resolution methods are also current.

D.7.0.1 q-value Calculation

Let

� Let m be the total number of tests performed.

� Let π0 be the probability that a hypothesis is null. This is estimated from the distribution of
p-values.

� Let δ be the p-value below which a hypothesis is rejected.

� Let k be the number of entities having p-values less than δ.

Then the q-value is

q(δ) =
π0 ×m× δ

k
.

The denominator is the number of hypotheses rejected. The numerator is the (estimated) number
of true null hypotheses (m× π0) multiplied by the chosen p-value (δ) giving the estimated number
of true null hypotheses rejected.
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