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S
trand NGS supports multiple workflows like DNA-Seq,
ChIP-Seq, RNA/small RNA Seq and Methyl-Seq along
with an ability to do integrative analysis between these

different workflows. In this application note, we will look
at an integrative study involving RNA-Seq and ChIP-Seq
data sets.

1 Introduction

Many next-generation sequencing studies utilise multiple
technologies to answer complex biological questions.
For example a DNA-Seq study elucidating genes with
deleterious mutations may lead to a RNA-Seq study to
observe and correlate the expression profiles of those genes.
Similarly changes in small RNA expression derived from a
small RNA-Seq study may be correlated with a RNA-Seq
study to identify genes showing negative correlation with
their corresponding regulatory small RNAs. So it becomes
very important for a NGS analysis software to be able to
handle data from multiple technologies as well as enable
the user to perform integrative analysis on multiple data
sets that may offer complementary information.

For this case study, we followed a paper titled “Next-
generation insights into regulatory T-cells: expression
profiling and FoxP3 occupancy in Human” [1] to illustrate
how one can do an integrative data analysis in Strand
NGS. This paper focuses on two types of immune cells:
T regulatory cells and T helper cells. Regulatory T-cells
(Treg) play an essential role in the negative regulation of
immune answers and the transcription factor (TF) FoxP3
is responsible for the regulation of many genes involved in
the Treg gene signature. Therefore, a deleterious event in
FoxP3 may lead to severe immune deficiencies in human
and mice. This paper analysed the RNA-Seq data of both
cell types in resting as well as activated state. Further
ChIP-Seq data is also analysed for both cell types in
activated state. Refer to Figure 1 for study design.

Figure 1: Activated and Resting states of Treg and Th cells
(taken from [1])

Using RNA-Seq data analysis workflow in Strand NGS,
we will first quantify the changes in the transcriptional
profile of Treg and Th cell types in resting versus activated
state. Further we also observe the differences in gene
signatures between the two cell types in both resting and
activated states. Using ChIP-Seq workflow in Strand NGS,
we will identify the DNA-protein binding sites of FoxP3 in
the activated Treg and Th cell types.

Finally, in the integrative part of the analysis, we will cor-
relate the binding sites of FoxP3 as observed by ChIP-Seq
to the expression profiles observed via RNA-Seq approach.
This analysis will provide insights regarding the impact of
FoxP3 binding on regulating the genes in both Treg and
Th cell types.
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2 Datasets

2.1 RNA-Seq

The data consists of naturally occurring human
CD4+CD25+ regulatory T-cells (Treg) and untouched hu-
man CD4+ T helper cells (CD4+ Th) along with cells
on which polyclonal T-cell activation was done using anti-
CD3 (clone OKT3) antibody and anti-CD28 (clone 28.2)
antibody. This amounts to four samples of resting and
activated primary CD4+ Th and Treg cells. The data is
paired end and was generated using the Illumina Genome
Analyzer platform and consists of 35bp length reads. Refer
to table 1 for more details.

Sample Cell line Total reads

SRR192425 T-reg resting 13,655,820

SRR192534 T-reg activated 15,277,248

SRR192532 CD4+ Th resting 8,237,652

SRR192536 CD4 + Th activated 10,335,712

Table 1: Description of RNA-Seq data sets.

2.2 ChIP-Seq

Samples corresponding to the ChIP assays of the activated
CD4+ Th and T-reg cells were available with two biological
replicates (Donors A1/A2 and B1/B2) with each donor
in turn having two technical replicates.The data for
ChIP-Seq is only from the activated cells i.e. naturally
occurring human CD4+CD25+ regulatory T-cells (Treg)
and untouched human CD4+ T helper cells (CD4+ Th)
on which polyclonal T-cell activation was done for 16h
using anti-CD3 (clone OKT3) antibody and anti-CD28
(clone 28.2) antibody. Post genomic DNA purification,
FoxP3-bound genomic DNA regions were isolated using a
goat polyclonal antibody against FoxP3. The data is single
end and was generated using the Illumina Genome Analyzer
platform and consists of 35bp length reads. Refer to table 2.

Sample Donor Cell line Total
reads

SRR192542 Donor B1 T-reg activated 7,056,313
SRR192543 Donor B1 T-reg activated 7,170,203
SRR192544 Donor B2 T-reg activated 7,507,454
SRR192545 Donor B2 T-reg activated 7,889,442
SRR196006 Donor A1 CD4+ Th activated 6,891,095
SRR192539 Donor A1 CD4+ Th activated 7,267,442
SRR192540 Donor A2 CD4+ Th activated 7,056,313
SRR192541 Donor A2 CD4+ Th activated 7,170,203

Table 2: Description of ChIP-Seq data sets.

Because of labelling issues, samples B1 and A2
were discarded. The data can be accessed at
http://sra.dnanexus.com/studies/SRP006674/runs.

3 Methods

3.1 RNA-Seq

Alignment was done using our in-house Strand NGS
aligner which follows the Burrows-Wheeler Transform

(BWT) approach. The data was aligned against both
the transcriptome (using Ensembl transcript model) and
the genome(hg19). This option allows for reads to map
to both the transcriptome and the genome depending
on where they align best. The alignment parameters
used allowed for 10% of mismatches and 5% of gaps in
a read. Reads aligning to multiple places were reported
only once and reads aligning to more than 5 places were
ignored. Since the base quality dipped towards the 3
end, we also trimmed low quality bases (≤ 10) from
that end. To ensure that this trimming did not result
in very short reads, we fixed the minimum read length at 25.

Post alignment, the quantification was done based on the
methods suggested by Mortazavi at al[7]. As the alignment
was done using the Ensembl genes and transcripts model
(57751 total genes), the quantification was also done using
the same. After quantification, we normalized the data
using the RPKM method. Before proceeding to find out the
differentially expressed genes, we decided to filter out genes
with very few reads (≥ 8 RPKM) in all 4 samples. On these
list of genes, fold change (FC) was done across different
conditions and the resulting genes (FC≥2.0) were used
for downstream pathway analysis. The pathway analysis
module computes the p− value using the hypergeometric
distribution and pathways satisfying a cutoff of ≤ 0.05
were retained. This significance analysis was carried on the
curated immune system pathways from Reactome [3].

3.2 ChIP-Seq

The raw reads corresponding to ChIP-seq were aligned in
Strand NGS against the human genome (hg19) reference.
The raw reads were aligned with minimum of 90% identity;
maximum of 5% gaps and 25bp as the minimum aligned
read length.

Post alignment, peak were detected with both the
MACS[10] and PICS[9] algorithms. Significant peaks were
detected with the PICS algorithm in each of the treatment
samples without a control, using a window size of 250
bases and a maximum number of 5 binding sites per gene.
Peak detection in MACS was carried out in each of the
treatment samples without a control, using an average
fragment size of 300 bases and a p − value cut off of
1.0E − 5. The resulting peak regions were both annotated
with genes present in a +/− 5kb window.

After peak calling, motif detection was done on those
peak regions overlapping with up and down regulated genes
specific to Treg cells and bound by FoxP3. The motif
detection was done using the GADEM algorithm[5].

3.3 Correlation between RNA-Seq and ChIP-Seq

Genes resulting from differential expression across condi-
tions in RNA-Seq were compared using the Venn diagram
feature in Strand NGS. These differentially expressed
genes from RNA-Seq were then compared with the genes
resulting from annotating peak calling regions in ChIP-Seq.
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Pathway analysis was done on significant genes across
both the workflows. The set of pathways and p − value
cut-offs used were similar to those in the RNA-Seq study.

4 Results and Discussion

4.1 RNA-Seq

4.1.1 Data QC and Alignment

Before proceeding with the alignment, we looked at some
pre-alignment QC metrics to gauge the read quality. In all
the samples, most of the reads seem to have an average
read quality of around 15 (Refer to figures 2 and 3). This
data quality is on the lower side as we typically see Illumina
data quality peaking around 30.

Figure 2: Base Quality by Position

Figure 3: Read Quality

After the pre-alignment QC, we decided to proceed with
the alignment. A majority of the reads aligned to the
transcriptome across all samples (Refer to table3). We can
also get further details on the alignment statistics from post
alignment QC plots. The alignment score and mapping
quality plots shown below give an indication of how many
reads aligned with mismatches and mapped to multiple
places. Across all samples, a majority of the reads aligned
with 0 mismatches (alignment score 100) and mapped to a
single location (mapping quality 254). Refer to figures 4
and 5.

Read Infor-
mation

Rest-
Treg

Rest-Th Act-
Treg

Act-Th

Total reads 13,655,820 15,277,248 8,237,652 10,335,712
Aligned
reads

11,601,040
(85%)

13,085,460
(85.7%)

6,715,325
(81.5%)

8,423,703
(81.5%)

Aligned to
transcrip-
tome

10,106,825 11,414,080 6,042,301 7,344,314

Aligned to
genome

1,494,215 1,671,380 673,024 1,079,389

Table 3: RNA-Seq Read Mapping Statistics

Figure 4: Alignment Score

Figure 5: Mapping Quality

4.1.2 Data Filtering and Fold Change Analysis

Post quantification and filtering, only 7,439 out of 57,751
genes remained and these were used for subsequent
differential expression analysis. In the FC analysis, we
found 2,546 genes regulated upon activation in Treg of
which 1,274 are upregulated and 1,272 are down regulated.
A similar comparison in the Th cells revealed 2,151 genes
to be regulated upon activation of which 1,174 were
upregulated and 977 genes were down regulated. When we
compared these lists (Refer to figure 6), we found 1,399
genes that were commonly regulated upon activation in
both the activated cells (for eg. SCD, IL22, FoxP3 or
TSPAN2), 1,147 genes unique to Treg (for eg. MS4A3, IL10,
LRRC32, CCNL2) and 752 genes unique to Th cells (for eg.
FOS, NR4A2, TNFSF13b, DACT1). Refer to figures 7, 8, 9.

The results obtained here were compared against the
gene lists provided in the publication for similar conditions.
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Figure 6: Common genes between activated Th and Treg cells

Figure 7: Genes specifically regulated in Th(Act)

Figure 8: Commonly regulated in Treg and Th

Refer to figures 10,11, 12. The differences observed could
be attributed to the differences in the methods used. The
paper used a FC cut-off of 1.4 along with a SAGEBetaBin
significance score of ≤ 0.01. We tried applying DESeq
to the sample comparisons. But without replicates, the
statistical test might not be as powerful and the numbers

Figure 9: Genes specifically regulated in Treg(Act)

reported were on the lower side.

Figure 10: Comparison of Treg(Act) specific gene signatures

Figure 11: Comparison of Th(Act) specific gene signatures

Figure 12: Comparison of common gene signatures
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4.1.3 Pathway Analysis

Pathway analysis was done on a set of 1147 genes that were
uniquely regulated in Treg, 752 genes that were uniquely
regulated in Th and on a commonly regulated gene list
of 1399 genes. This yielded 37, 39 and 33 pathways re-
spectively of which 22 are common. These include TCR
signalling, TRF mediated TLR3/TLR4 signalling, Toll like
receptor cascades pathways. Upon activation, Th cells
seem to modulate IPAF and AIM2 inflammasome path-
ways, IRAK2 and TRAF6 mediated activation of TAK1
complex, the ER phagosome pathway etc. In the case
of Treg cells, traffic and processing of endosomal TLR,
NOD1/2 signaling pathway, CD28 co-stimulation, comple-
ment cascade pathways were some of the ones that came
up as enriched.

4.1.4 Fold Change across different cell types

A comparison was also done across the different cell types
in the same state. 436 genes were differentially regulated
in Treg resting cells compared to Th resting cells; 288 up-
regulated and 148 down regulated. In the activated state
condition, 1597 genes were regulated out of which 483 were
upregulated and 614 were down regulated. Out of these 78
were commonly upregulated and 45 genes were commonly
down regulated. Refer to figure 13.

Figure 13: Comparison across cell types

4.1.5 Differential Splicing

Along with differential gene expression, the paper also
focuses on differential splicing events. One example shown
in the paper is the FoxP3 gene. Two different splice
variants have been described for FoxP3 in human[8]. One
isoform originates from an in-frame exon skipping event of
exon 3 (protein coding exon 2) leading to a protein product
which lacks 34 amino acids. Neither the forkhead nor
the zinc-finger domains are affected by this event. Both
variants have also been shown to be functional [8] such
that their biological role is still to be elucidated. From the
gene view of this event, one can decipher that not only is
FoxP3 upregulated in activated Treg compared to other
samples but the ENST00000376199 transcript (coloured
brown in the read density plot; See figure 14) with the
exon skipping event is the transcript that is predominantly

expressed in activated Treg.

Figure 14: FoxP3 splicing event in the gene view

4.2 ChIP-Seq Analysis

4.2.1 Data QC and Alignment

Pre-alignment QC indicates that the majority of the reads
have an average base quality of around Q30. The mean
base quality by position along the 35 bp read length ranges
from Q39 to Q20. Refer to figures15,16.

Figure 15: Base quality by position

The percentage of aligned reads range from 85− 87% for
the A1 (CD4+ activated) and B2 (Treg Activated) samples.
Refer to table5 for more details. Technical replicates in
both the conditions were combined for downstream analysis.

Mapping quality indicates that around 68% reads were
uniquely mapped in A1 and around 71% for B2(Mapping
quality 254). ENCODE recommends a minimum of 10
million uniquely mapped reads for each biological replicate
[4]. The Library Complexity Plot reflects the percentage of
uniquely aligned reads in the samples. The library complex-
ity score of 0.73 (range 0 to 1) indicates that the library
contains 26.63% duplicate reads (See figure17). When the
library has no duplicate reads, the distribution of the li-
brary perfectly aligns with the 45 degree line (in blue) and
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Figure 16: Read quality

Sample Donor Cell line Total
Reads

Aligned
Reads

SRR192544 Donor B2 T-reg acti-
vated

7,507,454 6,598,299

SRR192545 Donor B2 T-reg acti-
vated

7,889,442 6,873,047

SRR196006 Donor A1 CD4+ Th
activated

6,891,095 5,890,341

SRR192539 Donor A1 CD4+ Th
activated

7,267,442 6,254,033

Table 4: ChIP-Seq Read Mapping Statistics

the library is said to be complex. In addition, the numbers
of reads for every region in the positive and negative strand
are very similar within a given sample as expected.

Figure 17: Library complexity plot to assess duplicates

4.2.2 Peak Calling

ChIP-seq analysis was performed to identify genomic
regions which are bound by FoxP3 in activated CD4+
Th and activated Treg cells. As part of this analysis,
peaks were detected with both the MACS[10] and PICS[9]
algorithms. The number of peaks detected in the activated
Treg sample was 31225 for MACS and 27180 for PICS.
These regions corresponded to 13459 genes and 10312
genes (+/ − 5kb region size). For the Th sample, the
results came out to 6083 regions for MACS and 3802

regions for PICS which corresponded to 3296 genes and
1901 genes. (Refer to table5).

Sample MACS
(Regions)

Annotated
genes

PICS
(Regions)

Annotated
genes

Treg 31,225 13,459 27,180 10,312
Th 6,083 3,296 3,802 1,901

Table 5: Peak Calling Results

From the above table, we can see that Treg cells show
a larger number of peaks compared to the CD4+ Th cells.
This is as expected as FoxP3 has a prominent role in Treg
cell regulation when compared to Th cells.

4.3 Integrative Analysis

From the 483 genes that came up as upregulated upon
activation in Treg when compared to Th(Refer to figure 13),
290 genes were found to be common with the 13459 genes
corresponding to the peaks in Treg(MACS). These were
the genes that were activated in Treg as well as bounded
by FoxP3. A similar comparison of the same 483 geneset
with the 3296 genes corresponding to Th peaks(MACS)
revealed 74 common genes which were upregulated in
activated Treg and also bounded by FoxP3 in Th cells.
When we compared these two gene lists, it yielded 71
common genes which were bound by FoxP3 in both cell
types and upregulated in Treg. Out of the 219 unique
genes bounded by FoxP3 and upregulated in Treg, 29 were
found to be also upregulated in the Treg resting state when
compared to Th resting state. The 190 genes that were
specifically upregulated in Treg upon activation and which
were also bound by FoxP3 were used for pathway analysis.
7 pathways came up as significant(p − value ≤ 0.05).
These included the downstream signaling events of B
cell receptor(BCR), Nucleotide-binding domain, leucine
rich repeat containing receptor(NLR) signaling pathways,
Innate immune system pathways etc.

An example for a gene specifically upregulated in Treg
upon activation and which is also bound by FoxP3 would
be the CTLA4 gene which shows a clear up-regulation
in activated Treg compared to the other samples in
the RNA-Seq study(See figure 18). In the ChIP-Seq
study, it shows peaks at two points called out by both
PICS and MACS(See figure 19). These were identified
as potential FoxP3 binding sites in the paper(See figure 20).

CTLA-4 is a receptor on T cells that plays a critical role
in the initial activation and subsequent control of cellular
immunity. CTLA-4 is transiently expressed following T
cell activation and is a known T-cell marker. The binding
of FoxP3 to CTLA4 gene results in increased histone
acetylation ([2]). This chromatin modification facilitates
gene transcription and serves as a direct activator of
CTLA4 gene expression. The signal delivered via CTLA-4
down-regulates T cell function and inhibits excessive
expansion of activated T cells.

A similar analysis was done on the down regulated
gene list of 614 genes in activated Treg compared to
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Figure 18: RNA-Seq Gene View for CTLA4.

Figure 19: ChIP-Seq peaks for CTLA4.

Figure 20: Binding sites for CTLA4 (taken from [1]).

activated Th cells(Refer to figure 13). 355 genes were
downregulated and bound by FoxP3 in Treg and 99 genes
were downregulated in Treg and bound by FoxP3 in Th.
These 99 genes were a subset of the 355 genes. 256 unique
genes remained that were specifically bounded by FoxP3
in Treg and also downregulated in Treg. 5 of these genes
were also downregulated between the resting states of Treg
and Th. The remaining 251 genes that were bound by
FoxP3 and down regulated in activated Treg cells were
used for pathway analysis which resulted in 31 pathways
(p − value ≤ 0.05). These included the TCR signalling
pathways, co-stimulation by the CD28 family pathway,
TRIF mediated programmed cell death as well as the toll
like receptor cascade pathways. These 31 pathways showed
a very good concordance with those found in the RNA-Seq
analysis.

The peak regions detected by MACS in the activated
Treg cells and CD4+ Th cells when compared with
promoter regions(+/ − 5kb from gene start site) showed
that 3630 regions are in common while 10748 regions
are bound by FoxP3 only in Treg cells contributing to
a Treg specific regulatory network of FoxP3. The genes
corresponding to these regions were later compared with

the 190 and 251 up and down regulated genes in activated
Treg and bound by FoxP3. (See Figure 21).

Figure 21: Comparison of genes bound to promoter regions
and up/down regulated genes

Though a large number of genes seem to be regulated
by FoxP3 by binding to promoter regions, a few genes
also showed sites after the 5kb boundary from the gene
start site. As shown in the case of CTLA4 gene, FoxP3
regulates genes by binding to alternate sites inside the
gene. (See figure20). One example gene which was
downregulated in activated Treg and bound by FoxP3
but not in the promoter region was CLSTN1. (See figure22).

Figure 22: CLSTN1 binding sites.

Motifs were detected using GADEM algorithm within
MACS peaks that overlapped with the genes upregulated
and down-regulated by FoxP3 in activated Treg cells. These
motifs were searched in the JASPAR database to find
transcription factors that share this motif signature (See
figure 23). Regions bound by FoxP3 also show enrichment
for other transcription factors such as ETS-1, ZNF263
and IRF1. Although FoxP3 is a key regulator in Treg
development, it is becoming increasingly evident that FoxP3
alone only accounts for part of the Treg signature and, for
example, the suppression of IL2 and activation of IL2RA in
T-cells are also found in FoxP3-deficient Scurfy mice ([6]).
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Figure 23: Motif signature from GADEM

5 Conclusion

This article demonstrates the applicability of Strand
NGS in analysing data in an integrated manner from two
next generation sequencing approaches namely RNA-Seq
and ChIP-seq. Using RNA-Seq data, we identified gene
signatures that are either specific to resting and activated
states of Treg and Th cell types or are regulated in
both Treg and Th cell types upon activation (Activation
signature). Although in some of the previous studies,
FoxP3 is shown to have a more suppressive function
in organisms other than human, similar to [1], results
obtained in this case study indicate that activation and
repression of genes by FoxP3 is almost equal in human.
Further by using ChIP-seq data, we identified genes
that are bounded by FoxP3 in activated Treg and CD4+
Th cells. When correlating the promoter regions with
significant FoxP3 peaks, we obtained a set of more than
10,000 genes which may be subjected to a FoxP3 mediated
regulation.

Finally we integrated the inferences drawn from
individual RNA-Seq and ChIP-Seq data sets to understand
the regulatory effects of FoxP3 on the specific gene
expression signature of Treg cells. A large number of genes
regulated in activated Treg cells compared to activated
CD4+ Th cells are bounded by FoxP3 in their promoter
regions showing the importance of this transcription factor
in the Treg signature. In addition, promoter regions
bounded by FoxP3 also showed a enrichment for other
transcription factors hinting at a possibility of one or
several co-regulatory partners of FoxP3 in regulating Treg
genes.

Overall, using the data published in [1], we showed that
Strand NGS is a useful tool to not just analyse individual
data sets but also very effective in seamlessly integrating
the results to understand the correlation across two data
sets.
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