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H
igh throughput next-generation sequencing has
made possible the analysis of mRNA and miRNA
expression within the same cellular context. Strand

NGS provides an efficient and powerful way to quickly
and accurately analyse differential expression and infer
the network of miRNA-mRNA interactions in an inte-
grated manner. Using a case study, this paper highlights
the application of Strand NGS in the analysis of nasopha-
ryngeal carcinoma transcriptome.

1 Introduction

MicroRNAs are endogenous non-coding RNAs that
act by negatively regulating mRNA expression at the
post-transcriptional level. The use of high throughput
next-generation sequencing has made possible the
analysis of mRNA and miRNA expression within the
same cellular context. Generally, messenger RNA and
microRNA often have an inverse expression with multiple
miRNA targets interactions involved [4]. Altered miRNA
expression is increasingly identified with major functions
in tumor pathogenesis. Since multiple miRNAs may
coordinate to regulate targets in a common pathway,
analysis of pathways is more important in cancer
biology compared to characterization of individual target
genes. Furthermore, joint miRNA-mRNA expression
profiles, miRNA-target mRNA relationships, and the
construction of regulatory networks can provide new
insights into complex biological processes.

In this study, we showcase the capabilities for such
an integrated transcriptome analysis followed by mRNA-
microRNA regulatory network analysis in Strand NGS,
using data published by [5] in nasopharyngeal carcinoma
(NPC) model systems.

2 Data Set

The study by [5] characterizes the mRNA and miRNA
transcriptome in NPC models to understand transcript
regulation in nasopharyngeal carcinomas. The corre-
sponding data set, GSE54174, was downloaded from
GEO database. Sequencing was originally done using the
Solexa sequencing technology on the Illumina Genome
Analyzer IIx to generate 58 bp single end reads. Sam-
ples include matched total mRNA and small RNA from
HK1 a well differentiated NPC cell line, C666 and X666
two undifferentiated NPC cell lines and NP460 a normal
nasal epithelial cell line (table 1).

Cell line mRNA smallRNA
Sample Total

Reads
Sample Total

Reads

NP460
(Control)

SRR1178332 26,626,486 SRR1121963 26,752,260

HK1 (Well
differentiated
EBV-)

SRR1178331 32,699,704 SRR1121962 26,696,805

C666 (Undiffer-
entiated EBV+)

SRR1178329 27,076,636 SRR1121960 29,160,516

X666 (Undiffer-
entiated EBV+)

SRR1178330 34,508,151 SRR1121961 27,642,905

Table 1: Description of data sets

3 Methods

The overall data analysis workflow for expression and se-
quence analysis of the RNA-seq and small-RNA samples
is outlined in figure 1.

3.1 Alignment of RNA-Seq and small RNA data

The raw reads corresponding to RNA-seq were aligned in
Strand NGS against the human genome (hg19) reference
and the UCSC transcript model by running the alignment
against transcriptome and genome together with novel
splices. The raw RNA reads were aligned with minimum
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Figure 1: Overall approach for the analysis of RNA-Seq and small RNA data

of 90% identity; maximum of 5% gaps and 25 bp as the
minimum aligned read length. The small RNA reads were
aligned separately in a small RNA alignment experiment
with a mismatch cutoff of 2 and minimum read length of
10 bp. Reads that had an average quality ≤10 at the 3‘
end were trimmed prior to alignment.

3.2 Identifying differentially expressed genes

Samples were grouped based on cell lines with pair-wise
interpretations setup for C666 vs. NP460 and HK1 vs.
NP460 (cancer vs. normal). Quantification was done
to obtain the read densities equivalent to RPKMs as
reported in the original study. Differential expression
analysis of mRNA and miRNA was performed using the
DESeq script [2] via the script editor in Strand NGS with
a p-value ≤ 0.05 considered as significant. The original
study by [5] is based on the non-adjusted p-values. The
adjusted p-value is usually considered significant but we
have not applied any correction to be able to compare the
results. A fold change ≥2.0 was used to define entities
as being up- and down- regulated.

3.3 miRNA target prediction

Targets of HK1 and C666 miRNAs were predicted from
PITA and TargetScan databases with “Find target genes”
using a p-value cut-off 0.05.

3.4 Sequence variant analysis

Strand NGS variant caller is used to call SNPs and
short InDels. SNPs were identified in NP460, C666 and
HK1 mRNA samples using dbSNP135 annotation and a
confidence score ≥50 and a base quality ≥10. Please note
that we have used dbSNP135 database to compare our
results with the original paper, however the latest dbSNP
annotation is also available in Strand NGS. Reference
locations with coverage less than 10 reads were ignored
and only variants seen in at least 2 reads were considered.
Using the functionality “SNP Effect analysis”, variants
were filtered for SNPs with protein coding effects. In
addition, SNPs present within 3‘UTR and 3‘ downstream
were also identified using SNP effect analysis. Putative
somatic and germline variants were investigated using the
“Find Somatic Variants” analysis module. The somatic
variants were filtered for low coverage (≤10 reads), strand
bias (≥50) and a confidence score (0-800) to focus only
on high confidence SNPs.

3.5 Biological Interpretation

A multi-omic pathway analysis was performed on the
differentially expressed genes identified from miRNA and
mRNA analysis of nasopharyngeal carcinoma cell line
C666. This was done using both open source curated
pathways like Wiki Reactome, BioCyc and hand created
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GPML pathways as well as literature derived Natural
Language Processing (NLP)-based pathways. These path-
way resources are available in the tool. The biological
network was enriched by combining entity interactions
from differentially expressed mRNAs, miRNAs and their
predicted targets into a miRNA regulatory network.

4 Results

4.1 Data QC

• RNA-Seq Quality of the sequenced reads was as-
sessed by the Pre-Alignment QC module in Strand
NGS and found to be satisfactory. The RNA-seq
mapping is based on the Phred 64 scale and shows
that the mean base qualities range from 63 to 70
with the majority of the reads having a read quality
of 49 and above. The post alignment QC shows that
most RNA-seq reads have an alignment score >95%
and over 65% of the reads are uniquely mapped with
a mapping quality of 254.

• small RNA Quality of the sequenced reads was also
assessed. The pre alignment quality control on small
RNA samples indicates a mean base quality ≥34
across the read positions, with most of the reads
having an average base quality ≥Q30. The base
quality by position plot shows a consistently good
mean base quality of 38 throughout the read length
(58 bp). The post alignment QC shows that 50-70%
of the reads are uniquely mapped and hence assigned
a mapping quality of 254.

The genic region QC plot (figure 2) shows the dis-
tribution of reads across different genic classes that
were annotated with miRBase, tRNAscan-SE and
Ensembl. The microRNA fractions in these cell
lines are 9% in the normal NP460 cell line compared
with 6.6% in C666, 15.6% in HK1 and 5% in X666
NPC cell lines. These numbers are very similar for
NP460, C666 and X666 and only slightly higher for
the HK1 cell line (16% vs 12%), as reported by [5]
using miRBase v19.

Figure 2: Small RNA class distribution in genic region QC
plot for HK1 cell line

4.2 Alignment Output

The alignment statistics for mRNA and small RNA data
is given below:

• RNA-Seq The RNA alignment statistics report (fig-
ure 3), shows the number of uniquely mapped and
multiply mapped reads for every sample. The per-
centage of aligned reads ranged from 86% to 96%
and are in agreement with those reported by [5] us-
ing TopHat [6]. Please refer to table 1 for description
of samples.

• small RNA The average read quality of most reads
in the data is ≥Q30. The percentages of aligned
reads ranged from 88% to 96% (alignment report
now shown), and are in agreement with those re-
ported by [5] which used CLC Bio for the small RNA
alignment.

4.3 Differentially expressed genes

mRNA differential expression analysis identified 1224
genes in HK1 and 1433 genes in C666 as differentially
expressed, when compared to NP460. We compared
these differentially expressed entities across the NPC cell
lines. A Venn diagram of differentially-expressed mRNAs
and miRNAs against the immortalized nasopharyngeal
epithelial cell line NP460 are shown in figure 4. We
see that 402 mRNAs and 15 miRNAs are commonly
expressed in the two NPC cell lines. Of the unique
entities, 822 mRNAs and 32 miRNAs show significant
expression changes only in HK1. On the other hand,
1031 mRNAs and 29 miRNAs are differentially expressed
uniquely in C666.

Figure 4: Comparison of differentially-expressed transcripts
in two NPC cell lines

A comparison of the expression analysis in Strand
NGS vs. results published by [5] was done (Table 2). In
HK1, out of the 1224 RNA genes we identified, 1024 were
common, 200 were uniquely identified by Strand NGS
and 93 were uniquely identified by [5]. In C666, there
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Figure 3: Alignment report for RNA-Seq data

were 1246 common RNA genes with 187 and 85 genes
uniquely identified by Strand NGS and [5] respectively.
A similar comparison was done for the microRNAs.
Differential microRNA expression analysis in Strand
NGS identified 47 miRNAs in HK1 and 44 miRNAs
in C666 as differentially expressed. In HK1, 41 were
common, 6 were unique and 6 entities were not present
in Strand NGS. Out of the 44 entities in C666, 37 were
in common, while 7 were unique and one was absent in
our set. The original study includes both human and
EBV microRNAs but we are reporting numbers only
from the human dataset comparisons. The comparison
shows an overall agreement of differentially expressed
genes, with minor differences that are likely due to the
non-identical parameters used during alignment and
expression analysis.

Type Unique Strand Common Unique Szeto

HK1 mRNA 93 1024 200

C666 mRNA 187 1246 85

HK1 miRNA 6 41 6

C666 miRNA 7 37 1

Table 2: A comparison of the expression analysis in Strand
NGS vs. Szeto et al. [5]

Further, the fold change was plotted against the
p-values for a pair of conditions to determine the
significant thresholds (Figure 5 and 6). The p-values are
uniformly distributed along the y-axis making it difficult
to choose an appropriate cut-off. We therefore chose the
commonly accepted p-value threshold of 0.05 to select
entities for further analysis.

We went ahead with differentially expressed entities

Figure 5: Fold change and p-values for HK1 vs NP460

using non-adjusted p-values to be consistent with the
analysis of [5]. Also to illustrate visualisation in Strand
NGS, a scatter plot of the signal intensity values with a
fold change ≥2 shows the entities that are up- and down-
regulated in the C666 cell line (Figure 7).

4.4 Target predictions (miRNA-mRNA
interactions)

Corresponding targets of miRNAs (Fold change ≥2)
were predicted in Strand NGS using PITA and Tar-
getScan databases. The original study by [5], predicted
7951 targets for 149 miRNAs identified in any one
of the samples from miRanda, PITA and TargetScan
databases. Of these 7951 gene targets, 6423 were
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Figure 6: Fold change and p-values for C666 vs NP460

Figure 7: Scatter plot of entities that are at least
two-fold up-regulated or down-regulated in
C666 (SRR1178329) compared to the NP460
(SRR1178332), coloured based on normalized
signal intensities

inversely expressed. We have considered only the human
miRNAs expressed in two of the cell lines and not
included target predictions from miRanda database.
Targets of 47 HK1 and 44 C666 miRNAs were predicted
from PITA and TargetScan databases. Only the entities
supported by target prediction databases with a p-value
cut-off 0.05 were selected including 557 HK1 and 5107
C666 miRNA-mRNA interactions. miRNAs negatively
regulate mRNA expression and hence, an inverse miRNA
and mRNA expression profile is expected for these
interactions. In tumor cells, miRNAs can be either
downregulated or upregulated and their targets may
show consistent or inconsistent deregulation patterns [4].

The output of a “Find Targeted Gene” prediction
in smallRNA provides a list of genes predicted against
a group of miRNAs. The individual miRNA-mRNA
interactions, p-value, regulation and fold change were
generated by a script. A pattern score was assigned to
prioritize the inversely regulated pairs (up-down, down-
up). Integration of the transcript expression data and

predicted interactions identified 307 HK1 and 197 C666
miRNA-mRNA targets pairs with an inverse expression.
Table 3 shows an example of the predicted interactions
for two miRNAs of the miR-200 family in C666 that
were expressed with at least a 2-fold change. Some of
these genes are involved in apoptosis and epithelial to
mesenchymal transition. Particularly, the miR-200 fam-
ily members have been reported to be expressed at very
low levels in normal ovarian surface cells and substan-
tially increase in expression in ovarian cancer, whereas
expression of ZEB1 and ZEB2 shows the opposite pat-
tern [3]. Furthermore, these miRNAs were validated by
qRT-PCR by [5], and found to be consistent with the
RNA-seq expression profile.

miRNA p-val Gene FC FC
Accession (miRNA) (Gene)

hsa-miR-141-3p

0.05 EMP1 10.84 -4.64

0.01 ITGA6 10.84 -4.51

0.02 PRKACB 10.84 -7.15

0.03 PTPRG 10.84 -6.74

0.00 ZEB1 10.84 -4.23

0.03 TBX18 10.84 -16.28

0.01 ARMCX2 10.84 -8.15

0.03 LHFP 10.84 -11.01

0.02 LPHN2 10.84 -8.59

0.04 RAB30 10.84 -5.11

0.01 DNAJC15 10.84 -4.03

0.04 PCDH18 10.84 -14.46

0.02 FAT4 10.84 -10.36

0.01 CHD9 10.84 -2.80

0.02 NETO2 10.84 -18.08

0.03 CSMD3 10.84 -6.75

0.04 ZNF605 10.84 -15.02

hsa-miR-200c-3p

0.05 EMP1 9.73 -4.64

0.03 IGF2R 9.73 -3.73

0.01 ITGA6 9.73 -4.51

0.02 PRKACB 9.73 -7.15

0.00 ZEB1 9.73 -4.23

0.01 WASF1 9.73 -3.26

0.03 TBX18 9.73 -16.28

0.03 LHFP 9.73 -11.01

0.03 BASP1 9.73 -10.35

0.01 FERMT2 9.73 -5.43

0.02 LPHN2 9.73 -8.59

0.01 DNAJC15 9.73 -4.03

0.01 CCNJL 9.73 -6.50

0.02 FAT4 9.73 -10.36

0.01 CHD9 9.73 -2.80

0.03 SGPP1 9.73 -4.01

0.03 RAB34 9.73 -8.57

0.03 CSMD3 9.73 -6.75

0.01 CYYR1 9.73 -15.62

0.04 ZNF605 9.73 -15.02

Table 3: Predicted targets (PITA and TargetScan) of miR-
NAs that show an inverse expression pattern in
C666

4.5 Sequence variant analysis

SNP detection identified 5,22,147 variants that include
substitutions, deletions, insertions and complex variants.
Based on a comparison of the normal NP460 against the
tumor sample HK1 classified the variants as somatic
(1,65,050), germline (2,11,098) and ambiguous (1,46,047).
The variants were filtered for low coverage (≤10), strand
bias (≥50) and score (0-800) using the “Region list
operations” utility, to remove false positive variant calls
that resulted in 29,822 somatic and 16,552 germline
SNPs. A subset of 175 of these somatic variants are
represented in COSMIC. A total of 37,063 variants
have protein coding effects out of which 16,666 were
predicted to be damaging variants in 2923 unique
genes. From a set of germline SNPs with protein
effects (2,71,486) functional risk was predicted to be
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Figure 8: Multi-omics analysis of curated pathway seen in pathway viewer - Wnt signalling pathway.

damaging in 4509 non-synonymous variants involving
767 genes of unknown clinical significance. These
germline and somatic variants can be subject to a
deeper interpretation to elucidate their effect on protein
function.

A novel coding SNP in TP53 (p.118T>P) and another
known SNP rs1695 (p.118 I>V) in GSTP1 were reported
by [5]. Our analysis did not call out the novel TP53
SNP either as a somatic or germline variant and was
instead a heterozygous (T/G) SNP call in the normal
NP460 and both NPC cell lines. The other reported
SNP, rs1695 (A>G; Ile105Val) is a known heterozygous
missense somatic variant in GSTP1 found to be present
in both NPC cell lines C666 and HK1. The inheritance of
at least one GSTP1 valine-105 allele apparently confers a
significantly increased risk of developing therapy-related
acute myeloid leukemia post chemotherapy [1].

4.6 Multi-omics pathway analysis

We have focused on the C666 carcinoma cell line
for pathway analysis. The differentially expressed
genes identified from miRNA and mRNA analysis of
nasopharyngeal carcinoma cell line C666 were analyzed
in a multi-omic pathway analysis using the open source
Wiki Pathways in Strand NGS. In the C666 cell line, the
Wnt-signaling (p-val = 0.001 ), beta-Integrin (p-val =
0.006), Apoptosis (p-val =0.003 ), EGR-EGFR (p-val
=0.113) related pathways entities were significantly
represented using a p-value cut-off of 0.05, as shown in
the list of pathways in Figure 8. For example, in the
Wnt-signaling pathway, WNT10B, ESRRB, FZD7 were
upregulated while those downregulated include TCF7L1,
PRKCA and PLAU (Figure 8) with established roles
in cancer. One of the upregulated genes namely the

estrogen-related receptor beta (ESRRB), involved in
pluripotency, is a potential tumor marker with a direct
function in cancer progression.

Entities identified by different annotations, for
example Entrez Gene ID and RefSeq Transcript ID, are
mapped using BridgeDb and only mapped entities are
visible on the pathway. Most pathways have limited
microRNA information and require extensive curation.
We were not able to find any curated pathways that
were significantly enriched for microRNAs. Using a
miRNA entity list we identified the network targets and
regulatory.

A multi-omic analysis was performed comparing
mRNA and miRNA entities on the NLP-derived miRNA
regulatory network. The NLP-based networks are
generated by matching selected entities to entities
in the Interaction database in Strand NGS. It then
retrieves relations like expression, promoter binding,
and regulation between the set of matched entities that
satisfy a relation score threshold. Eventually, it displays
the results in the form of a graphical network. Figure
9 shows a sub-set of the merged miRNA network run
on the C666 entities. The network provides information
of the microRNAs belonging to the miR-200 family
(miR200a, miR200b and miR200c) and its interacting
mRNAs like ZEB1, PROM1 and LARP6 participating
in apoptosis and epithelial to mesenchymal transition.
Expression patterns of entities belonging to the two
experiments for the chosen interpretation along with
the relation types based on NLP are highlighted on the
network.

An over lay of 3‘-UTR SNP information for miRNA
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Figure 9: NLP-based merged miRNA regulatory network.

Figure 10: SNP overlay on miR-targeted genes in squamous cell - TarBase (Homo sapiens).

interacting genes is also useful to interpret disease out-
comes. SNP Effect analysis identified 38,181 SNPs lo-
cated in the 3‘-UTR/3‘-downstream region of 5116 genes.
For an imported pathway of miRNA and their target
genes in squamous cells, 3‘ UTR SNP information was
overlaid to identify genes with a 3‘ UTR SNP targeted
by miRNAs (Figure 10). There are three 3‘ UTR SNPs
called out in the IL18 gene, one of which is reported to
be a disrupted binding pair [5]. However we found SNPs

in low coverage regions or were germline polymorphisms
without functional risk predictions. Hence these calls
remain inconclusive and require higher coverage for more
confident SNP calls.
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5 Conclusions

Strand NGS provides an efficient and powerful way to
quickly and accurately analyse the integrated transcrip-
tome that includes alignment, quality inspection, expres-
sion analysis, sequence analysis and biological interpreta-
tion. The purpose of an integrated transcriptomic study
is to improve our understanding of miRNA-mRNA inter-
actions in regulatory networks. In addition to identifying
microRNA targets computationally, inversely expressed
miRNA-mRNAs should aid in establishing the pathways
of relevance. Entities identified as differentially expressed
in NPC cells were found to be enriched in proliferation,
adhesion, survival, and apoptosis pathways. A better
understanding of the molecular signalling pathways, such
as in NPC, steers the identification of novel diagnostic
and prognostic biomarkers and personalized treatment
options for cancer.

6 Acknowledgements

We would like to thank Prof. Maria Li Lung and her
team from the University of Hong Kong, for the data.
We also acknowledge the support of our colleague Anita
Sathyanarayanan for helping with figures 5 and 6, which
are generated in R programming language.

References

[1] James M Allan, Christopher P Wild, Sara Rollinson,
Eleanor V Willett, Anthony V Moorman, Gareth J
Dovey, Philippa L Roddam, Eve Roman, Raymond A
Cartwright, and Gareth J Morgan. Polymorphism
in glutathione s-transferase p1 is associated with
susceptibility to chemotherapy-induced leukemia.
Proceedings of the National Academy of Sciences,
98(20):11592–11597, 2001.

[2] Simon Anders and Wolfgang Huber. Differential ex-
pression analysis for sequence count data. Genome
biol, 11(10):R106, 2010.

[3] Ausra Bendoraite, Emily C Knouf, Kavita S Garg,
Rachael K Parkin, Evan M Kroh, Kathy C O’Briant,
Aviva P Ventura, Andrew K Godwin, Beth Y
Karlan, Charles W Drescher, et al. Regulation
of mir-200 family micrornas and zeb transcription
factors in ovarian cancer: evidence supporting a
mesothelial-to-epithelial transition. Gynecologic on-
cology, 116(1):117–125, 2010.

[4] Li Guo, Yang Zhao, Sheng Yang, Hui Zhang, and Feng
Chen. Integrative analysis of mirna-mrna and mirna-
mirna interactions. BioMed research international,
2014, 2014.

[5] Carol Ying-Ying Szeto, Chi Ho Lin, Siu Chung Choi,
Timothy TC Yip, Roger Kai-Cheong Ngan, George
Sai-Wah Tsao, and Maria Li Lung. Integrated mrna
and microrna transcriptome sequencing characterizes

sequence variants and mrna–microrna regulatory net-
work in nasopharyngeal carcinoma model systems.
FEBS open bio, 4:128–140, 2014.

[6] Cole Trapnell, Lior Pachter, and Steven L Salzberg.
Tophat: discovering splice junctions with rna-seq.
Bioinformatics, 25(9):1105–1111, 2009.

Strand NGS - Reads to Discovery c©Strand Life Sciences, Inc., 2015 page 8 of 8

srinivas
Rectangle



Strand was founded in 2000 by computer science and mathematics 
professors from India’s prestigious Indian Institute of Science who 
recognized the need to automate and integrate life science data analysis 
through an algorithmic and computational approach. Strand’s segue into the 
life sciences was through informatics products and services for research 
biologists, chemists, and toxicologists that combine advanced visualization, 
predictive systems modeling, data integration and scientific content 
management - over 2000 research laboratories worldwide (about 30% of 
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leading pharmaceutical and biotechnology companies, research hospitals 
and academic institutions. With a recent investment by Biomark Capital, 
Strand has grown its established team to over 200 employees, many with 
multidisciplinary backgrounds that transcend computation and biology.

Since 2012, Strand has been expanding its focus to include clinical genomics, 
spanning sequencing, data interpretation, reporting and counseling. Strand 
operates a 10,000 square foot laboratory space with state-of-the-art clinical 
genomics capabilities and is also establishing Strand Centers for Genomics 
and Personalized Medicine in several hospitals around the world to serve 
as outreach points for genomic counseling. Based on the experience gained 
from sequencing, analyzing, interpreting and reporting on clinical samples 
over a wide variety of clinical indications, Strand has developed an end-
to-end solution for clinical labs that handles all stagesfrom analysis to 
reporting. The interpretation and reporting software platform has been 
designed and developed specifically for the medical professional, ranging 
from the molecular pathologist to the physician. By enhancing sequence-
based diagnostics and clinical genomic data interpretation using a strong 
foundation of computational, scientific, and medical expertise, Strand is 
bringing individualized medicine to the world.

For more information about Strand, please visit www.strandls.com,
or follow us on twitter @StrandLife.

INDIA 
5th Floor, Kirloskar Business Park, Bellary Road, Hebbal, Bangalore 560024

USA 
548 Market Street, Suite 82804, San Francisco, CA 94104

www.strandls.com


